Handbuch:HPPA/Installation/Festplatten

From Gentoo Wiki
Jump to:navigation Jump to:search
This page is a translated version of the page Handbook:HPPA/Installation/Disks and the translation is 100% complete.
Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎italiano • ‎polski • ‎português do Brasil • ‎русский • ‎தமிழ் • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
HPPA Handbuch
Installation
Über die Installation
Auswahl des Mediums
Konfiguration des Netzwerks
Vorbereiten der Festplatte(n)
Installation des Stage Archivs
Installation des Basissystems
Konfiguration des Kernels
Konfiguration des Systems
Installation der Tools
Konfiguration des Bootloaders
Abschluss
Arbeiten mit Gentoo
Portage-Einführung
USE-Flags
Portage-Features
Initskript-System
Umgebungsvariablen
Arbeiten mit Portage
Dateien und Verzeichnisse
Variablen
Mischen von Softwarezweigen
Zusätzliche Tools
Eigener Portage-Tree
Erweiterte Portage-Features
Netzwerk-Konfiguration
Zu Beginn
Fortgeschrittene Konfiguration
Modulare Vernetzung
Drahtlose Netzwerke
Funktionalität hinzufügen
Dynamisches Management


Einführung in blockorientierte Geräte

Blockorientierte Geräte

Schauen wir uns die Festplatten-spezifischen Aspekte von Gentoo Linux und Linux im Allgemeinen an - insbesondere blockorientierte Geräte (Block Devices), Partitionen und Linux Dateisysteme. Wenn Sie die Vor- und Nachteile von Festplatten verstanden haben, können Sie Partitionen und Dateisysteme für die Installation erstellen.

Zu Beginn schauen wir uns blockorientierte Geräte an. SCSI- und SATA-Laufwerke haben Device-Namen wie: /dev/sda, /dev/sdb, /dev/sdc usw. Modernere Rechner können PCI-Express basierte NVMe Solid-State-Disks haben, die Device-Namen haben wie: /dev/nvme0n1, /dev/nvme0n2 usw.

Die folgende Tabelle soll Lesern dabei helfen herauszufinden, wo bestimmte Arten von blockorientierten Geräten zu finden sind:

Geräte-Typ Standard Geräte-name Anmerkungen
SATA, SAS, SCSI, oder USB flash /dev/sda Found on hardware from roughly 2007 until the present, this device handle is perhaps the most commonly used in Linux. These types of devices can be connected via the SATA bus, SCSI, USB bus as block storage. As example, the first partition on the first SATA device is called /dev/sda1.
NVM Express (NVMe) /dev/nvme0n1 The latest in solid state technology, NVMe drives are connected to the PCI Express bus and have the fastest transfer block speeds on the market. Systems from around 2014 and newer may have support for NVMe hardware. The first partition on the first NVMe device is called /dev/nvme0n1p1.
MMC, eMMC, und SD /dev/mmcblk0 embedded MMC devices, SD cards, and other types of memory cards can be useful for data storage. That said, many systems may not permit booting from these types of devices. It is suggested to not use these devices for active Linux installations; rather consider using them to transfer files, which is their design goal. Alternatively they could be useful for short-term backups.

Die oben genannten blockorientierten Geräte repräsentieren eine abstrakte Schnittstelle zur Festplatte. Benutzerprogramme können diese Block Devices nutzen, um mit der Festplatte zu interagieren, ohne sich darum sorgen zu müssen, ob die Festplatten über SATA, SCSI oder etwas anderem angebunden sind. Das Programm kann den Speicher auf der Festplatte einfach als eine Anhäufung zusammenhängender 4096-Byte (4k) Blöcke mit wahlfreiem Zugriff ansprechen.


Partitionen und Slices

Obwohl es theoretisch möglich wäre die gesamte Festplatte für die Unterbringung eines Linux Systems zu nutzen, wird das in der Praxis selten gemacht. Statt dessen teilt man das gesamte Festplatten Block-Device in kleinere, besser verwaltbare Block Devices auf. Auf den meisten Systemen nennt man diese Partitionen. Andere Architekturen verwenden eine ähnliche Technik, genannt "Slices".

Ein Partitionsschema entwerfen

Wie viele Partitionen und wie groß?

Bei dem Design des Partitionsschemas sollten die Anforderungen an das System und an die Dateisysteme berücksichtigt werden. Wenn es viele Nutzer gibt, ist eine eigene Partition /home/ ratsam, da diese die Sicherheit erhöht und Backups und andere Wartungsarbeiten vereinfacht. Wenn Gentoo installiert wird, um als Mailserver zu dienen, dann sollte es eine eigene Partition /var/ geben, weil alle Mails im Verzeichnis /var/ gespeichert werden. Spiele-Server werden eine eigene Partition /opt/ besitzen, da die meiste Spiele-Server-Software dort installiert wird. Der Grund für diese Empfehlungen ist ähnlich wie für das /home/ Verzeichnis: Sicherheit, Backups und Wartung.

Bei den meisten Gentoo-Installationen sollten /usr/ und /var/ relativ groß sein. In /usr werden die Mehrzahl der Anwendungen und auch der Linux Kernel Quellcode gespeichert (unter /usr/src). Standardmäßig enthält /var/ das Gentoo ebuild Repository (unter /var/db/repos/gentoo), das alleine schon rund 650 MiB Plattenplatz benötigt. Diese Größenabschätzung enthält noch nicht den benötigten Plattenplatz für die Verzeichnisse /var/cache/distfiles und /var/cache/binpkgs, die sich im Laufe der Zeit mit Source-Code Dateien und (optional) mit Binärpaketen füllen werden - je nachdem, wann und wie sie dem System hinzugefügt werden.

Die Anzahl und Größe der Partitionen hängt vom Abwägen der Vor- und Nachteile und der Auswahl der besten Lösung für einen gegebenen Anwendungsfall ab. Separate Partitionen oder Volumes haben folgende Vorteile:

  • Sie können das performanteste Dateisystem für jede Partition oder jedes Volume wählen.
  • Dem Gesamtsystem kann der freie Speicherplatz nicht ausgehen, wenn ein fehlerhaftes Tool kontinuierlich Dateien auf eine Partition oder ein Volume schreibt.
  • Falls nötig, kann die Zeit für Dateisystemüberprüfungen reduziert werden, da mehrere Überprüfungen gleichzeitig durchgeführt werden können. (Dieser Vorteil kommt aber eher bei mehreren Festplatten, als bei mehreren Partitionen auf einer Festplatte zum Tragen.)
  • Sie können die Sicherheit erhöhen, indem Sie einige Partitionen oder Volumes "read-only", nosuid (setuid Flags werden ignoriert), noexec (executable Flags werden ignoriert) etc. einbinden.


Viele separate Partitionen können aber auch Nachteile haben:

  • Wenn diese schlecht an das System angepasst sind, kann es sein, dass eine Partition voll ist und auf einer anderen Partition noch viel freier Platz verfügbar ist.
  • Eine separate Partition für /usr/ kann es erforderlich machen, dass beim Booten ein initramfs verwendet wird, welches diese Partitionen vor der Ausführung anderer Boot-Skripte mountet. Das Erzeugen und Betreiben eines initramsfs ist nicht Teil dieses Handbuchs. Wir empfehlen Anfängern, für /usr/ keine eigene Partition zu verwenden.
  • Es gibt ein Limit von maximal 15 Partitionen für SCSI und SATA - es sei denn, der Datenträger nutzt GPT-Labels.
Notiz
Wenn Sie systemd verwenden wollen, muss /usr/ beim Booten verfügbar sein - entweder als Teil des Root-Dateisystems oder mit Hilfe eines initramfs gemountet.

Was ist mit dem Swap-Speicher?

Es gibt keine perfekte Größe für den Swap-Speicher. Der Zweck von Swap-Speicher ist, Festplattenspeicherplatz für den Kernel bereitzuhalten, wenn der interne Speicher (RAM) knapp wird. Der Swap-Speicher erlaubt dem Kernel, Speicherseiten, auf die vermutlich nicht bald zugegriffen wird, auf die Platte auszulagern (Swap oder Page-Out). Dadurch kann Arbeitsspeicher im RAM für den aktuell laufenden Prozess freigemacht werden. Werden die auf die Festplatte ausgelagerten Speicherseiten (Pages) jedoch plötzlich benötigt, müssen diese Seiten wieder zurück in den Arbeitsspeicher geladen werden (Page-In). Dies dauert jedoch erheblich länger, als wenn die Daten direkt aus dem RAM gelesen werden könnten (da Festplatten verglichen mit Arbeitsspeicher sehr langsam sind).

Wenn auf einem System keine speicherintensiven Anwendungen ausgeführt werden oder das System viel RAM zur Verfügung hat, benötigt es vermutlich nicht viel Swap-Speicher. Wenn jedoch der Ruhezustand "Hibernation" verwendet werden soll, wird der Swap-Speicher verwendet, um den gesamten Inhalt des Hauptspeichers (RAM) zu sichern (dieser Ruhezustand wird bei Desktop- und Laptop-Systemen häufiger verwendet, als bei Servern). Wenn das System den Ruhezustand "Hibernation" unterstützen soll, muss der Swap-Speicher so groß wie oder größer als der Hauptspeicher (RAM) sein.

Als generelle Regel gilt: der Swap-Speicher sollte zwei Mal so groß sein wie der Arbeitsspeicher (RAM). Auf Systemen mit mehreren (rotierenden) Festplatten ist es sinnvoll, eine Swap-Partition auf jeder Festplatte einzurichten, damit Schreib-/Lese-Operationen parallel ausgeführt werden können. Je schneller auf einen Festplatte zugegriffen werden kann, desto schneller wird das System arbeiten, wenn auf Swap-Speicher zugegriffen werden muss. Wenn zwischen rotierenden Festplatten und SSDs gewählt werden kann, ist es aus Performance-Sicht besser, den Swap-Speicher auf die SSD zu legen. Alternativ zu Swap-Partitionen können auch Swap-Dateien verwendet werden; dies ist hauptsächlich interessant bei Systemen mit sehr geringem Festplatten-Platz.


fdisk auf HPPA benutzen

Verwenden Sie fdisk um die benötigten Partitionen zu erzeugen:

root #fdisk /dev/sda

HPPA Maschinen verwenden PC Standard DOS Partitionstabellen. Verwenden Sie einfach den o Befehl, um eine neue DOS Partitionstabelle zu erstellen.

Command (m for help):o
Building a new DOS disklabel.

PALO (der HPPA Bootloader) benötigt eine besondere Partition, damit er funktioniert. Es muss eine mindestens 16 MB große Partition am Anfang der Festplatte für ihn erzeugt werden. Der Typ der Partition muss f0 (Linux/PA-RISC boot) sein.

Wichtig
Wenn dies vergessen wird und die Installation ohne eine spezielle PALO Partition fortgesetzt wird, kann das System möglicherweise nicht neugestartet werden. Falls die Festplatte größer als 2 GB ist stellen Sie bitte sicher, dass die Bootpartition innerhalb der ersten 2 GB der Festplatte liegt. PALO ist nicht in der Lage einen Kernel zu lesen, der außerhalb dieser 2 GB Grenze liegt.
DATEI /etc/fstabEinfaches Standard-Partitionsschema
/dev/sda2    /boot   ext2    noauto,noatime   1 1
/dev/sda3    none    swap    sw               0 0
/dev/sda4    /       ext4    noatime          0 0

In fdisk sieht so ein Partitionslayout folgendermaßen aus:

Command (m for help):p
Disk /dev/sda: 4294 MB, 4294816768 bytes
133 heads, 62 sectors/track, 1017 cylinders
Units = cylinders of 8246 * 512 = 4221952 bytes
  
   Device Boot      Start         End      Blocks   Id  System
/dev/sda1               1           8       32953   f0  Linux/PA-RISC boot
/dev/sda2               9          20       49476   83  Linux
/dev/sda3              21          70      206150   82  Linux swap
/dev/sda4              71        1017     3904481   83  Linux


Erstellen von Dateisystemen

Einleitung

Nachdem die Partitionen angelegt wurden, ist es an der Zeit, Dateisysteme darauf anzulegen. Im nächsten Abschnitt werden die unterschiedlichen Dateisysteme beschrieben, die Linux unterstützt. Leser, die bereits wissen, welches Dateisystem sie verwenden wollen, können bei Dateisystem auf einer Partition anlegen fortfahren. Alle anderen sollten weiterlesen, um mehr über die verfügbaren Dateisysteme zu erfahren ...

Dateisysteme

Linux unterstützt mehrere Dutzend Dateisysteme, wobei allerdings viele davon für ganz spezielle Anwendungszwecke optimiert sind. Nur einige Dateisysteme gelten als stabil auf der hppa Architektur. Es ist ratsam, sich über Dateisysteme und deren Unterstützungsgrad zu informieren, damit Sie nicht für wichtige Partitionen ein eher experimentelles Dateisystem wählen. ext4 ist das empfohlene all-round Dateisystem für alle Plattformen.

btrfs
Ein "next-generation" Dateisystem, das moderne Features wie Snapshots, Selbst-Heilung mit Hilfe von Checksums, transparente Komprimierung, Subvolumes und integriertes RAID enthält. Kernel älter als 5.4.y enthalten Fehler, die zu "Filesystem corruption" führen können. Solche Kernel sollten keinesfalls auf Produktibsystemen eingesetzt werden. Das englische Original dieses Handbuchs beschreibt die Fehler folgendermaßen: "Kernels prior to 5.4.y are not guaranteed to be safe to use with btrfs in production because fixes for serious issues are only present in the more recent releases of the LTS kernel branches. Filesystem corruption issues are common on older kernel branches, with anything older than 4.4.y being especially unsafe and prone to corruption. Corruption is more likely on older kernels (than 5.4.y) when compression is enabled. RAID 5/6 and quota groups unsafe on all versions of btrfs. Furthermore, btrfs can counter-intuitively fail filesystem operations with ENOSPC when df reports free space due to internal fragmentation (free space pinned by DATA + SYSTEM chunks, but needed in METADATA chunks). Additionally, a single 4K reference to a 128M extent inside btrfs can cause free space to be present, but unavailable for allocations. This can also cause btrfs to return ENOSPC when free space is reported by df. Installing sys-fs/btrfsmaintenance and configuring the scripts to run periodically can help to reduce the possibility of ENOSPC issues by rebalancing btrfs, but it will not eliminate the risk of ENOSPC when free space is present. Some workloads will never hit ENOSPC while others will. If the risk of ENOSPC in production is unacceptable, you should use something else. If using btrfs, be certain to avoid configurations known to have issues. With the exception of ENOSPC, information on the issues present in btrfs in the latest kernel branches is available at the btrfs wiki status page."
ext2
Das ist das erprobte und wahre Linux Dateisystem - aber es hat kein Metadaten-Journaling. Dies bedeutet, dass routinemäßige ext2 Dateisystemüberprüfungen beim Systemstart viel Zeit kosten können. Mittlerweile gibt es eine gute Auswahl an Journaling-Dateisystemen, die sehr schnell auf Konsistenz überprüft werden können und deshalb gegenüber ihren Nicht-Journaling-Ausführungen im Allgemeinen bevorzugt werden. Journaling-Dateisysteme verhindern lange Verzögerungen wenn das System gebootet ist und es passiert, dass das Dateisystem in einem inkonsistenten Zustand ist.
ext3
Die Journaling-Version des Dateisystems ext2. Es bietet Metadaten-Journaling für schnelle Wiederherstellung zusätzlich zu anderen Journaling-Modi wie Full-Data- und Ordered-Data-Journaling. Es verwendet einen H-Baum (Htree) Index der hohe Leistung in fast allen Situationen ermöglicht. Kurz gesagt, ext3 ist ein sehr gutes und verlässliches Dateisystem.
ext4
Ursprünglich als Abspaltung von ext3 entstanden, bringt ext4 neue Funktionen, Leistungsverbesserungen und den Wegfall der Größenbeschränkungen durch moderate Änderungen des On-Disk-Formats. Es kann Datenträger mit bis zu 1 EB und mit Dateigrößen von bis zu 16 TB verwalten. Anstelle der klassischen ext2/3 Bitmap-Block-Allokation nutzt ext4 Extents, die die Performance bei großen Dateien verbessern und Fragmentierung reduzieren. ext4 bietet zusätzlich ausgereiftere Block-Allokation-Algorithmen (Zeitverzögerte Allokation und mehrfache Preallokation), die es dem Dateisystemtreiber ermöglichen, das Layout der Daten auf der Festplatte zu optimieren. Es ist das empfohlene Allzweck-Dateisystem für jede Plattform.
f2fs
The Flash-Friendly File System was originally created by Samsung for the use with NAND flash memory. As of Q2, 2016, this filesystem is still considered immature, but it is a decent choice when installing Gentoo to microSD cards, USB drives, or other flash-based storage devices.
JFS
Das Hochleistungs-Journaling-Dateisystem von IBM. JFS ist ein schlankes, schnelles und verlässliches B+-Baum basiertes Dateisystem mit guter Performance unter verschiedensten Gegebenheiten.
ReiserFS
Ein B+-Baum basiertes Journaling-Dateisystem mit einer guten Allgemeinleistung, besonders im Umgang mit winzigen Dateien für den Preis von höherer CPU-Auslastung. ReiserFS version 3 is included in the mainline Linux kernel, but is not recommended to be used when initially installing a Gentoo system. Newer versions of the ReiserFS filesystem exist, however they require additional patching of the mainline kernel to be utilized.
XFS
Ein Dateisystem mit Metadaten-Journaling, das mit einer Reihe robuster Fähigkeiten daherkommt und für Skalierbarkeit optimiert ist. XFS scheint gegenüber unterschiedlichen Hardwareproblemen weniger fehlertolerant zu sein, aber es wird kontinuierlich weiterentwickelt und um moderne Features erweitert.
VFAT
Auch als FAT32 bekannt, wird von Linux unterstützt, aber unterstützt keine Standard UNIX Berechtigungen. Es wird vor allem aus Kompatibilitätsgründen zu anderen Betriebssystemen (Microsoft Windows oder Apple's OSX) verwendet. VFAT ist Voraussetzung für die Bootloader Firmware mancher Systeme (wie UEFI).
NTFS
This "New Technology" filesystem is the flagship filesystem of Microsoft Windows since Windows NT 3.1. Similar to VFAT above it does not store UNIX permission settings or extended attributes necessary for BSD or Linux to function properly, therefore it should not be used as a root filesystem. It should only be used for interoperability with Microsoft Windows systems (note the emphasis on only).

Dateisystem auf einer Partition anlegen

Dateisysteme können mit Hilfe von Programmen auf einer Partition oder auf einem Datenträger angelegt werden. Die folgende Tabelle zeigt, welchen Befehl Sie für welches Dateisystem benötigen. Um weitere Informationen zu einem Dateisystem zu erhalten, können Sie auf den Namen des Dateisystems klicken.

Dateisystem Befehl zum Anlegen Teil der Minimal CD? Gentoo Paket
btrfs mkfs.btrfs Yes sys-fs/btrfs-progs
ext2 mkfs.ext2 Yes sys-fs/e2fsprogs
ext3 mkfs.ext3 Yes sys-fs/e2fsprogs
ext4 mkfs.ext4 Yes sys-fs/e2fsprogs
f2fs mkfs.f2fs Yes sys-fs/f2fs-tools
jfs mkfs.jfs Yes sys-fs/jfsutils
reiserfs mkfs.reiserfs Yes sys-fs/reiserfsprogs
xfs mkfs.xfs Yes sys-fs/xfsprogs
vfat mkfs.vfat Yes sys-fs/dosfstools
NTFS mkfs.ntfs Yes sys-fs/ntfs3g

Um beispielsweise die EFI System-Partition (/dev/sda2) als FAT32 und die root-Partition (/dev/sda4) als ext4 zu formatieren (wie in dem Beispiel-Partitionsschema), würde man folgende Befehle verwenden:

root #mkfs.vfat -F 32 /dev/sda2
root #mkfs.ext4 /dev/sda4

Bei der Verwendung von ext2, ext3 oder ext4 auf kleinen Partitionen (kleiner als 8 GiB), sollte das Dateisystem mit den passenden Optionen erstellt werden, um genügend Inodes zu reservieren. Dies kann mit einer der folgenden Anweisungen erfolgen:

root #mkfs.ext2 -T small /dev/<device>
root #mkfs.ext3 -T small /dev/<device>
root #mkfs.ext4 -T small /dev/<device>

Dies vervierfacht die Zahl der Inodes für ein angegebenes Dateisystem in der Regel, da es dessen "bytes-per-inode" (Bytes pro Inode) von 16 kB auf 4 kB pro Inode reduziert.

Erzeugen Sie nun die Dateisysteme auf den zuvor erzeugten Partitionen (oder logischen Laufwerken).

Aktivieren der Swap-Partition

mkswap ist der Befehl der verwendet wird um Swap-Partitionen zu initialisieren:

root #mkswap /dev/sda3

Zur Aktivierung der Swap-Partition verwenden Sie swapon:

root #swapon /dev/sda3

Erzeugen und aktivieren Sie jetzt die Swap-Partition mit den oben genannten Befehlen.

Einhängen der Root-Partition

Nun, da die Partitionen initialisiert sind und ein Dateisystem beinhalten, ist es an der Zeit, diese einzuhängen. Verwenden Sie den Befehl mount, aber vergessen Sie nicht die notwendigen Einhänge-Verzeichnisse für jede Partition zu erzeugen. Als Beispiel hängen wir die Root-Partition ein:

root #mount /dev/sda4 /mnt/gentoo
Notiz
Wenn sich /tmp/ auf einer separaten Partition befinden muss, ändern Sie die Berechtigungen nach dem Einhängen:
root #chmod 1777 /mnt/gentoo/tmp
Dies gilt ebenfalls für /var/tmp.

In der Anleitung wird später das Dateisystem proc (eine virtuelle Schnittstelle zum Kernel) zusammen mit anderen Kernel Pseudo-Dateisystemen eingehängt. Zunächst installieren wir jedoch die Gentoo Installationsdateien.