Préparer les disques

From Gentoo Wiki
Jump to: navigation, search
This page is a translated version of the page Handbook:AMD64/Installation/Disks and the translation is 100% complete.

Other languages:
Deutsch • ‎English • ‎Türkçe • ‎español • ‎français • ‎italiano • ‎polski • ‎português do Brasil • ‎čeština • ‎русский • ‎українська • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
Sommaire du manuel
Installation
‎À propos de l'installation
Choix du support
Configurer le réseau
Préparer les disques
Installer l'archive stage3
Installer le système de base
Configurer le noyau
Configurer le système
Installer les outils
Configurer le système d'amorçage
Finaliser
Utiliser Gentoo
Introduction à Portage
Les options de la variable USE
Les fonctionnalités de Portage
Scripts d'initialisation systèmes
Variables d'environnement
Utiliser Portage
Fichiers et répertoires
Les variables
Mélanger plusieurs branches logicielles
Outils supplémentaires
Dépôt personnalisé
Fonctionnalités avancées
Configuration du réseau
Bien démarrer
Configuration avancée
Les modules réseau
Sans fil
Ajouter des fonctionnalités
Gestion dynamique


Introduction aux fichiers de périphériques

Les fichiers de périphériques

Étudions en détail les aspects de Gentoo qui concernent les disques, les systèmes de fichiers de Linux, les partitions et les fichiers de périphériques. Une fois que les tenants et les aboutissants des disques et des systèmes de fichiers seront compris, il sera possible d'établir les partitions et les systèmes de fichiers pour l'installation de Gentoo Linux.

Pour commencer, intéressons-nous aux fichiers de périphériques. Le plus connu des fichiers de périphériques est sans doute le premier disque sur un système Linux, à savoir /dev/sda. Les disques SCSI et Serial ATA sont tous les deux étiquetés /dev/sd* ; même les disques IDE sont étiquetés /dev/sd* avec la nouvelle structure de libata dans le noyau. Avec l'ancienne structure, le premier disque IDE est étiqueté /dev/hda.

Les fichiers de périphériques ci-dessus représentent une interface abstraite pour le disque. Les programmes utilisateurs peuvent utiliser ces fichiers de périphériques pour interagir avec le disque sans se soucier de savoir s'il est IDE, SCSI ou quelque chose d'autre. Le programme peut simplement adresser le stockage sur le disque comme un groupe de blocs contigus de 512 octets, accessibles aléatoirement.

Tables de partition

Bien qu’il soit théoriquement possible d’utiliser un disque brut et non partitionné pour héberger un système Linux (lors de la création d’un RAID btrfs par exemple), cela n’est réellement jamais fait. Les périphériques de bloc de disque sont scindés en blocs plus petits, plus faciles à gérer. Pour l’architecture amd64, on appelle ces blocs des partitions. Deux technologies de partitionnement standard sont actuellement disponibles : MBR et GPT.

MBR

La configuration MBR (Master Boot Record) utilise des identifiants 32 bits pour le secteur de démarrage et la longueur des partitions et prend en charge trois types de partitions : primaire, étendue et logique. Les partitions primaires stockent leurs informations directement dans le MBR - un très petit emplacement (généralement 512 octets) au tout début d’un disque. En raison de cet espace restreint, seules quatre partitions primaires sont prises en charge (par exemple, /dev/sda1 à /dev/sda4).

Pour prendre en charge davantage de partitions, l’une des partitions primaire peut être marquée en tant que partition étendue. Cette partition peut alors contenir des partitions logiques (des partitions dans une partition).

Important
Bien que toujours prises en charge par la plupart des fabricants de cartes mères, les tables de partitions MBR sont considérées comme anciennes. Si vous ne travaillez pas avec du matériel antérieur à 2010, il est préférable de partitionner un disque à l'aide d'une Table de partition GUID. Les lecteurs qui veulent poursuivre avec MBR doivent reconnaître les informations suivantes :
  • La plupart des cartes mères sorties après 2010 considèrent le MBR comme un mode de démarrage ancien (pris en charge, mais pas idéal).
  • En raison de l'utilisation d'identificateurs 32 bits, le MBR ne peut pas gérer les disques dont la taille est supérieure à 2 To.
  • À moins de créer une partition étendue, le MBR prend en charge un maximum de quatre partitions.
  • La configuration du MBR ne fournit aucun MBR de sauvegarde. Par conséquent, si une application ou un utilisateur écrase le MBR, toutes les informations sur la partition sont perdues.

Les auteurs de ce manuel suggèrent d'utiliser GPT autant que possible pour les installations de Gentoo.

GPT

La configuration GPT (GUID Partition Table) utilise des identifiants 64 bits pour les partitions. L'emplacement dans lequel elle stocke les informations de partition est beaucoup plus grand que les 512 octets d'un MBR, ce qui signifie qu'il n'y a pratiquement aucune limite sur le nombre de partitions d'un disque GPT. De plus, la taille d'une partition est limitée par une limite beaucoup plus grande (presque 8 Zo - oui, zettaoctets).

Lorsque l'interface logicielle entre le système d'exploitation et le micrologiciel est UEFI (au lieu du BIOS), GPT est presque obligatoire car des problèmes de compatibilité surviennent avec MBR.

GPT profite également de l'utilisation de la somme de contrôle et de la redondance. Il utilise les sommes de contrôle CRC32 pour détecter les erreurs dans les tables d'en-tête et de partition et dispose d'une sauvegarde GPT en fin de disque. Cette table de sauvegarde peut être utilisée pour réparer les dommages subis par le GPT principal situé au début du disque.

GPT ou MBR

D'après les descriptions ci-dessus, on pourrait penser que l'utilisation de la technologie GPT devrait toujours être l'approche recommandée, cependant, il y à quelques exceptions.

L'utilisation de GPT sur un ordinateur basé sur le BIOS fonctionne, mais il est alors impossible de procéder à un double démarrage avec un système d'exploitation Microsoft Windows. La raison est que Microsoft Windows démarrera en mode UEFI s’il détecte une étiquette de partition GPT.

Certains microprogrammes de carte mère bogués configurés pour démarrer en mode BIOS/CSM/legacy peuvent également rencontrer des problèmes lors du démarrage à partir de disques étiquetés GPT. Si tel est le cas, il est possible de contourner le problème en ajoutant l'indicateur boot/active sur la partition de protection MBR, ce qui doit être effectué via fdisk à l'aide de l'option -t dos pour le forcer à lire la table de partition en utilisant le format MBR.

Dans ce cas, lancez fdisk et activez/désactivez l'option à l'aide de la touche a. Appuyez sur 1 pour sélectionner la première partition, puis appuyez sur la touche w pour écrire les modifications sur le disque et quitter l'application fdisk :

user $fdisk -t dos /dev/sda
Welcome to fdisk (util-linux 2.24.1).
Changes will remain in memory only, until you decide to write them.
Be careful before using the write command.
  
Command (m for help): a
Partition number (1-4): 1
  
Command (m for help): w

Utiliser UEFI

Lors de l'installation de Gentoo sur un système utilisant UEFI pour démarrer le système d'exploitation (au lieu de BIOS), il est important de créer une Partition Système EFI (ESP). Les instructions pour parted ci-dessous contiennent les indication nécessaires à la bonne réalisation de cette opération.

L'ESP doit être une variante FAT (parfois indiquée par vfat sur les systèmes Linux). La spécification UEFI (EN) officielle indique que les systèmes de fichiers FAT12, 16 ou 32 seront reconnus par le microprogramme UEFI, bien que FAT32 soit recommandé pour l'ESP. Procédez au formatage de l'ESP en FAT32 :

root #mkfs.fat -F 32 /dev/sda2
Important
Si une variante FAT n'est pas utilisée pour l'ESP, le micrologiciel UEFI du système n'est pas sûr de trouver le chargeur de démarrage (ou le noyau Linux) et ne sera probablement pas en mesure de démarrer le système !

Stockage avancé

RAID Btrfs

Comme indiqué ci-dessus, btrfs peut créer des systèmes de fichiers répartis sur plusieurs périphériques. Les systèmes de fichiers btrfs générés de cette manière peuvent fonctionner dans les modes suivants : raid0, raid1, raid10, raid5 et raid6. Les modes RAID 5 et 6 se sont considérablement améliorés, mais sont toujours considérés comme instables. Une fois qu'un système de fichiers à plusieurs périphériques a été créé, de nouveaux périphériques peuvent être ajoutés et les anciens périphériques supprimés à l'aide de quelques commandes. btrfs est en général considéré plus compliqué pour les débutants.

Les systèmes de fichiers ext4 peuvent être convertis en systèmes de fichiers btrfs, ce qui peut être utile pour ceux qui souhaitent installer Gentoo avec un système de fichiers stable et bien testé puis approfondir progressivement leurs connaissances des nouveaux systèmes de fichiers tels que btrfs.

LVM

Le CD d'installation amd64 supporte la gestion par volumes logiques (Logical Volume Manager - LVM). LVM augmente la flexibilité offerte par la configuration du partitionnement. Les instructions d'installation ci-dessous se concentrent sur des partitions normales, mais il est bon de savoir que LVM est pris en charge si cette route est souhaitée. Visitez l'article LVM/fr pour plus de détails. Les nouveaux utilisateurs doivent se méfier : bien que LVM soit entièrement pris en charge, son utilisation n’entre pas dans le cadre de ce manuel.

Schéma de partitionnement par défaut

Pour le reste de ce manuel, le schéma de partitionnement suivant sera utilisé comme exemple :

Partition Système de fichiers Taille Description
/dev/sda1 (chargeur d'amorçage) 2M Partition BIOS boot
/dev/sda2 ext2 (ou fat32 si UEFI est utilisé) 128M Partition Boot/EFI
/dev/sda3 (swap) 512M ou plus Partition swap
/dev/sda4 ext4 Espace restant sur le disque Partition Racine

Si cela est suffisant et que le lecteur emprunte la route GPT, il peut immédiatement passer à Défaut : utiliser Parted pour partitionner le disque. Ceux qui sont toujours intéressés par l'utilisation de MBR et qui utilisent l'exemple de paritionnement peuvent aller à Alternative : utiliser fdisk pour partitionner le disque.

Both fdisk and parted are partitioning utilities. fdisk is well known, stable, and recommended for the MBR partition layout while parted was one of the first Linux block device management utilities to support GPT partitions. Those who like the user interface of fdisk can use gdisk (GPT fdisk) as an alternative to parted.

Before going to the creation instructions, the first set of sections will describe in more detail how partitioning schemes can be created and mention some common pitfalls.

Designing a partition scheme

How many partitions and how big?

The number of partitions is highly dependent on the environment. For instance, if there are lots of users, then it is advised to have /home/ separate as it increases security and makes backups easier. If Gentoo is being installed to perform as a mail server, then /var/ should be separate as all mails are stored inside /var/. A good choice of filesystem will then maximize the performance. Game servers will have a separate /opt/ as most gaming servers are installed there. The reason is similar for the /home/ directory: security and backups. In most situations, /usr/ is to be kept big: not only will it contain the majority of applications, it typically also hosts the Gentoo ebuild repository (by default located at /var/db/repos/gentoo) which already takes around 650 MiB. This disk space estimate excludes the binpkgs/ and distfiles/ directories that are stored under /var/cache/ by default.

It very much depends on what the administrator wants to achieve. Separate partitions or volumes have the following advantages:

  • Choose the best performing filesystem for each partition or volume.
  • The entire system cannot run out of free space if one defunct tool is continuously writing files to a partition or volume.
  • If necessary, file system checks are reduced in time, as multiple checks can be done in parallel (although this advantage is more with multiple disks than it is with multiple partitions).
  • Security can be enhanced by mounting some partitions or volumes read-only, nosuid (setuid bits are ignored), noexec (executable bits are ignored) etc.

However, multiple partitions have disadvantages as well. If not configured properly, the system might have lots of free space on one partition and none on another. Another nuisance is that separate partitions - especially for important mount points like /usr/ or /var/ - often require the administrator to boot with an initramfs to mount the partition before other boot scripts start. This isn't always the case though, so results may vary.

There is also a 15-partition limit for SCSI and SATA unless the disk uses GPT labels.

What about swap space?

There is no perfect value for the swap partition. The purpose of swap space is to provide disk storage to the kernel when internal memory (RAM) is under pressure. A swap space allows for the kernel to move memory pages that are not likely to be accessed soon to disk (swap or page-out), freeing memory. Of course, if that memory is suddenly needed, these pages need to be put back in memory (page-in) which will take a while (as disks are very slow compared to internal memory).

When the system is not going to run memory intensive applications or the system has lots of memory available, then it probably does not need much swap space. However, swap space is also used to store the entire memory in case of hibernation. If the system is going to need hibernation, then a bigger swap space is necessary, often at least the amount of memory installed in the system.


What is the BIOS boot partition?

A BIOS boot partition is a very small (1 to 2 MB) partition in which boot loaders like GRUB2 can put additional data that doesn't fit in the allocated storage (a few hundred bytes in case of MBR) and cannot be placed elsewhere.

Such partitions are not always necessary, but considering the low space consumption and the difficulties we have with documenting the plethora of partitioning differences otherwise, it is recommended to create it in either case.

For completeness, the BIOS boot partition is needed when a GPT partition layout is used with GRUB2 in PC/BIOS mode. It is not required when booting in EFI/UEFI mode.

Défaut : utiliser Parted pour partitionner le disque

In this chapter, the example partition layout mentioned earlier in the instructions will be used:

Partition Description
/dev/sda1 BIOS boot partition
/dev/sda2 Boot partition
/dev/sda3 Swap partition
/dev/sda4 Root partition

Change the partition layout according to personal preference.

Viewing the current partition layout with parted

The parted application offers a simple interface for partitioning the disks and supports very large partitions (more than 2 TB). Fire up parted against the disk (in our example, we use /dev/sda). It is recommended to ask parted to use optimal partition alignment:

root #parted -a optimal /dev/sda
GNU Parted 2.3
Using /dev/sda
Welcome to GNU Parted! Type 'help' to view a list of commands.

Alignment means that partitions are started on well-known boundaries within the disk, ensuring that operations on the disk from the operating system level (retrieve pages from the disk) use the least amount of internal disk operations. Misaligned partitions might require the disk to fetch two pages instead of one even if the operating system asked for a single page.

To find out about all options supported by parted, type help and press return.

Setting the GPT label

Most disks on the x86 or amd64 architectures are prepared using an msdos label. Using parted, the command to put a GPT label on the disk is mklabel gpt:

Warning
Changing the partition type will remove all partitions from the disk. All data on the disk will be lost.
(parted)mklabel gpt

To have the disk with MBR layout, use mklabel msdos.

Removing all partitions with parted

If this isn't done yet (for instance through the mklabel operation earlier, or because the disk is a freshly formatted one), first remove all existing partitions from the disk. Type print to view the current partitions, and rm <N> where <N> is the number of the partition to remove.

(parted)rm 2

Do the same for all other partitions that aren't needed. However, make sure to not make any mistakes here - parted executes the changes immediately (unlike fdisk which stages them, allowing a user to "undo" his changes before saving or exiting fdisk).

Creating the partitions

Now parted will be used to create the partitions with the following settings:

  • The partition type to use. This usually is primary. If the msdos partition label is used, keep in mind that there can be no more than 4 primary partitions. If more than 4 partitions are needed, make one of the first four partitions extended and create logical partitions inside it.
  • The start location of a partition (which can be expressed in MB, GB, ...)
  • The end location of the partition (which can be expressed in MB, GB, ...)

First, tell parted that the size unit we work with is megabytes (actually mebibytes, abbreviated as MiB which is the "standard" notation, but we will use MB in the text throughout as it is much more common):

(parted)unit mib

Now create a 2 MB partition that will be used by the GRUB2 boot loader later. Use the mkpart command for this, and inform parted to start from 1 MB and end at 3 MB (creating a partition of 2 MB in size).

(parted)mkpart primary 1 3
(parted)name 1 grub
(parted)set 1 bios_grub on
(parted)print
Model: Virtio Block Device (virtblk)
Disk /dev/sda: 20480MiB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
  
Number   Start      End      Size     File system  Name   Flags
 1       1.00MiB    3.00MiB  2.00MiB               grub   bios_grub

Do the same for the boot partition (128 MB), swap partition (in the example, 512 MB) and the root partition that spans the remaining disk (for which the end location is marked as -1, meaning the end of the disk minus one MB, which is the farthest a partition can go).

(parted)mkpart primary 3 131
(parted)name 2 boot
(parted)mkpart primary 131 643
(parted)name 3 swap
(parted)mkpart primary 643 -1
(parted)name 4 rootfs

When using the UEFI interface to boot the system (instead of BIOS), mark the boot partition as the EFI System Partition. Parted does this automatically when the boot option is set on the partition:

(parted)set 2 boot on

The end result looks like so:

(parted)print
Model: Virtio Block Device (virtblk)
Disk /dev/sda: 20480MiB
Sector size (logical/physical): 512B/512B
Partition Table: gpt
  
Number   Start      End      Size     File system  Name   Flags
 1       1.00MiB    3.00MiB  2.00MiB               grub   bios_grub
 2       3.00MiB    131MiB   128MiB                boot   boot
 3       131MiB     643MiB   512MiB                swap
 4       643MiB     20479MiB 19836MiB              rootfs
Note
On an UEFI installation, the boot and esp flags will show up on the boot partition.

Use the quit command to exit parted.

Alternative : utiliser fdisk pour partitionner le disque.

Note
Although recent fdisk should support GPT, it has still shown to have some issues with it. The instructions given below assume that the partition layout being used is MBR.

The following parts explain how to create the example partition layout using fdisk. The example partition layout was mentioned earlier:

Partition Description
/dev/sda1 BIOS boot partition
/dev/sda2 Boot partition
/dev/sda3 Swap partition
/dev/sda4 Root partition

Change the partition layout according to personal preference.

Viewing the current partition layout

fdisk is a popular and powerful tool to split a disk into partitions. Fire up fdisk against the disk (in our example, we use /dev/sda):

root #fdisk /dev/sda
Note
To use GPT support, add -t gpt. It is recommended to closely investigate the fdisk output in case more recent developments in fdisk change its default behavior of defaulting to MBR. The remainder of the instructions assume an MBR layout.

Use the p key to display the disk's current partition configuration:

Command (m for help):p
Disk /dev/sda: 240 heads, 63 sectors, 2184 cylinders
Units = cylinders of 15120 * 512 bytes
  
   Device Boot    Start       End    Blocks   Id  System
/dev/sda1   *         1        14    105808+  83  Linux
/dev/sda2            15        49    264600   82  Linux swap
/dev/sda3            50        70    158760   83  Linux
/dev/sda4            71      2184  15981840    5  Extended
/dev/sda5            71       209   1050808+  83  Linux
/dev/sda6           210       348   1050808+  83  Linux
/dev/sda7           349       626   2101648+  83  Linux
/dev/sda8           627       904   2101648+  83  Linux
/dev/sda9           905      2184   9676768+  83  Linux

This particular disk was configured to house seven Linux filesystems (each with a corresponding partition listed as "Linux") as well as a swap partition (listed as "Linux swap").

Removing all partitions with fdisk

First remove all existing partitions from the disk. Type d to delete a partition. For instance, to delete an existing /dev/sda1:

Command (m for help):d
Partition number (1-4): 1

The partition has now been scheduled for deletion. It will no longer show up when printing the list of partitions (p, but it will not be erased until the changes have been saved. This allows users to abort the operation if a mistake was made - in that case, type q immediately and hit Enter and the partition will not be deleted.

Repeatedly type p to print out a partition listing and then type d and the number of the partition to delete it. Eventually, the partition table will be empty:

Command (m for help):p
Disk /dev/sda: 30.0 GB, 30005821440 bytes
240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 = 7741440 bytes
  
Device Boot    Start       End    Blocks   Id  System

Now that the in-memory partition table is empty, we're ready to create the partitions.

Creating the BIOS boot partition

First create a very small BIOS boot partition. Type n to create a new partition, then p to select a primary partition, followed by 1 to select the first primary partition. When prompted for the first sector, make sure it starts from 2048 (which is needed for the boot loader) and hit Enter. When prompted for the last sector, type +2M to create a partition 2 Mbyte in size:

Note
The start from sector 2048 is a fail-safe in case the boot loader does not detect this partition as being available for its use.
Command (m for help):n
Command action
  e   extended
  p   primary partition (1-4)
p
Partition number (1-4): 1
First sector (64-10486533532, default 64): 2048
Last sector, +sectors +size{M,K,G} (4096-10486533532, default 10486533532): +2M

Mark the partition for UEFI purposes:

Command (m for help):t
Selected partition 1
Hex code (type L to list codes): 4
Changed system type of partition 1 to 4 (BIOS boot)
Note
Using UEFI with MBR partition layout is discouraged. If an UEFI capable system is used, please use GPT layout.

Creating the boot partition

Now create a small boot partition. Type n to create a new partition, then p to select a primary partition, followed by 2 to select the second primary partition. When prompted for the first sector, accept the default by hitting Enter. When prompted for the last sector, type +128M to create a partition 128 Mbyte in size:

Command (m for help):n
Command action
  e   extended
  p   primary partition (1-4)
p
Partition number (1-4): 2
First sector (5198-10486533532, default 5198): (Hit enter)
Last sector, +sectors +size{M,K,G} (4096-10486533532, default 10486533532): +128M

Now, when pressing p, the following partition printout is displayed:

Command (m for help):p
Disk /dev/sda: 30.0 GB, 30005821440 bytes
240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 = 7741440 bytes
  
   Device Boot    Start       End    Blocks   Id  System
/dev/sda1             1         3      5198+  ef  EFI (FAT-12/16/32)
/dev/sda2             3        14    105808+  83  Linux

Type a to toggle the bootable flag on a partition and select 2. After pressing p again, notice that an * is placed in the "Boot" column.

Creating the swap partition

To create the swap partition, type n to create a new partition, then p to tell fdisk to create a primary partition. Then type 3 to create the third primary partition, /dev/sda3. When prompted for the first sector, hit Enter. When prompted for the last sector, type +512M (or any other size needed for the swap space) to create a partition 512MB in size.

After all this is done, type t to set the partition type, 3 to select the partition just created and then type in 82 to set the partition type to "Linux Swap".

Creating the root partition

Finally, to create the root partition, type n to create a new partition, then p to tell fdisk to create a primary partition. Then type 4 to create the fourth primary partition, /dev/sda4. When prompted for the first sector, hit Enter. When prompted for the last sector, hit Enter to create a partition that takes up the rest of the remaining space on the disk. After completing these steps, typing p should display a partition table that looks similar to this:

Command (m for help):p
Disk /dev/sda: 30.0 GB, 30005821440 bytes
240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 = 7741440 bytes
  
   Device Boot    Start       End    Blocks   Id  System
/dev/sda1             1         3      5198+  ef  EFI (FAT-12/16/32)
/dev/sda2   *         3        14    105808+  83  Linux
/dev/sda3            15        81    506520   82  Linux swap
/dev/sda4            82      3876  28690200   83  Linux

Saving the partition layout

To save the partition layout and exit fdisk, type w.

Command (m for help):w

With the partitions created, it is now time to put filesystems on them.


Créer des systèmes de fichiers

Introduction

Maintenant que les partitions sont créées, il est temps d'y placer un système de fichiers. Dans la section suivante les différents systèmes de fichiers que Linux prend en charge seront décris. Les lecteurs qui connaissent déjà quel système de fichiers utiliser peuvent continuer avec Appliquer un système de fichiers à une partition. Les autres devraient continuer à lire pour en apprendre plus sur les systèmes de fichiers disponibles.

Les systèmes de fichiers

Plusieurs systèmes de fichiers sont disponibles. Certains d'entre eux sont considérés stables sur l'architecture amd64 - il est conseillé de se renseigner sur les systèmes de fichiers et leur prise en charge avant d'en choisir un plus expérimental pour les partitions importantes.

btrfs
Un système de fichiers de nouvelle génération offrant de nombreuses fonctionnalités avancées telles que l'instantané, l'auto-guérison via des sommes de contrôle, la compression transparente, les sous-volumes et le RAID intégré. Quelques distributions ont commencé à l'expédier comme une option prête à l'emploi, mais il n'est pas encore prêt pour la production. Les rapports de corruption du système de fichiers sont courants. Ses développeurs incitent les gens à utiliser la dernière version du noyau pour la sécurité car les plus anciens ont des problèmes connus. Cela a été le cas pendant des années et il est trop tôt pour dire si les choses ont changé. Les correctifs pour les problèmes de corruption sont rarement rétro-portés vers les noyaux plus anciens. Procéder avec prudence lors de l'utilisation de ce système de fichiers !
ext2
Il s'agit du système de fichiers Linux éprouvé, mais il n'a pas de journalisation des métadonnées, ce qui signifie que les vérifications de routine du système de fichiers ext2 au démarrage peuvent prendre beaucoup de temps. Il y a maintenant une grande sélection de systèmes de fichiers journalisés de nouvelle génération dont la cohérence peut être vérifiée très rapidement et qui sont donc généralement préférés à leurs homologues non journalisés. Les systèmes de fichiers journalisés empêchent les retards importants lorsque le système est démarré et que le système de fichiers se trouve dans un état incohérent.
ext3
La version journalisée du système de fichiers ext2, fournissant la journalisation des métadonnées pour une récupération rapide en plus d'autres modes de journalisation améliorés tels que les données complètes et la journalisation ordonnée des données. Il utilise un indice HTree qui permet des performances élevées dans presque toutes les situations. En bref, ext3 est un système de fichiers très bon et fiable.
ext4
Initialement créé en tant que fork de ext3, ext4 apporte de nouvelles fonctionnalités, des améliorations de performances et la suppression des limites de taille avec des modifications modérées du format sur le disque. Il peut couvrir des volumes allant jusqu'à 1 Eo, et avec une taille de fichier maximale de 16 To. Au lieu de l'allocation de blocs bitmap ext2/3 classique, ext4 utilise des extensions, ce qui améliore les performances des fichiers volumineux et réduit la fragmentation. Ext4 fournit également des algorithmes d'allocation de blocs plus sophistiqués (allocation différée et allocation multi-bloc) donnant au conducteur du système de fichiers plus de moyens d'optimiser la disposition des données sur le disque. Ext4 est le système de fichiers multi plate-forme tout usage recommandé.
f2fs
Le système de fichiers Flash-Friendly a été créé par Samsung pour l'utilisation avec la mémoire flash NAND. Depuis le deuxième trimestre 2016, ce système de fichiers est encore considéré comme immature, mais c'est un choix décent lors de l'installation de Gentoo sur des cartes microSD, des clés USB ou autres périphériques de stockage flash.
JFS
Le système de fichiers de journalisation hautes performances d'IBM. JFS est un système de fichiers basé sur l'arborescence B+ étantà la fois léger, rapide et fiable avec de bonnes performances dans diverses conditions.
ReiserFS
Un système de fichiers journalisé basé sur l'arborescence B+ qui a de bonnes performances globales, en particulier lorsqu'il s'agit de traiter de nombreux fichiers minuscules au prix de plusieurs cycles de processeur. ReiserFS semble être moins bien entretenu que les autres systèmes de fichiers.
XFS
Un système de fichiers avec journalisation des métadonnées, doté d'un ensemble de fonctionnalités robuste et optimisé pour l'évolutivité. XFS semble être moins indulgent dans le cas de problèmes matériels.
vfat
Également connu sous le nom FAT32, ce format est pris en charge par Linux mais ne prend pas en charge les paramètres d'autorisation. Il est principalement utilisé pour l'interopérabilité avec d'autres systèmes d'exploitation (principalement Microsoft Windows) mais est également une nécessité pour certains micrologiciels systèmes (comme UEFI).
NTFS
Ce système de fichiers New Technology est le système de fichiers phare de Microsoft Windows. Similaire à vfat ci-dessus, il ne stocke pas les paramètres d'autorisation ni les attributs étendus nécessaires au bon fonctionnement de BSD ou de Linux. Il ne peut donc pas être utilisé comme système de fichiers racine. Il devrait seulement être utilisé pour l'interopérabilité avec les systèmes Microsoft Windows (noter l'emphase sur seulement).

Lors de l'utilisation de ext2, ext3 ou ext4 sur une petite partition (moins de 8 Go), le système de fichiers doit être créé avec les options appropriées pour réserver suffisamment de nœuds d'index ou inodes. L'application mke2fs utilise le paramètre bytes-per-inodes pour calculer le nombre d' inodes d'un système de fichiers. Sur des partitions plus petites, il est conseillé d'augmenter le nombre d' inodes calculé.

Sur ext2, ext3 ou ext4 cela peut se faire à l'aide de la commande suivante :

root #mkfs.ext2 -T small /dev/<device>
root #mkfs.ext3 -T small /dev/<device>
root #mkfs.ext4 -T small /dev/<device>

En général, ceci quadruple le nombre d' inodes pour un système de fichiers étant donné que son paramètre bytes-per-inode passe de un tous les 16 ko à un tous les 4 ko. Cela peut être encore plus peaufiné en fournissant le ratio :

root #mkfs.ext2 -i <ratio> /dev/<device>

Appliquer un système de fichiers à une partition

Pour créer un système de fichiers sur une partition ou un volume, des outils sont disponibles pour chaque système de fichiers. Cliquer sur le nom du système de fichiers dans le tableau ci-dessous pour plus d'informations sur chaque système de fichiers :

Système de fichiers Commande pour la création Sur le CD minimal ? Paquet
btrfs mkfs.btrfs Oui sys-fs/btrfs-progs
ext2 mkfs.ext2 Oui sys-fs/e2fsprogs
ext3 mkfs.ext3 Oui sys-fs/e2fsprogs
ext4 mkfs.ext4 Oui sys-fs/e2fsprogs
f2fs mkfs.f2fs Oui sys-fs/f2fs-tools
jfs mkfs.jfs Oui sys-fs/jfsutils
reiserfs mkfs.reiserfs Oui sys-fs/reiserfsprogs
xfs mkfs.xfs Oui sys-fs/xfsprogs
vfat mkfs.vfat Oui sys-fs/dosfstools
NTFS mkfs.ntfs Oui sys-fs/ntfs3g

Par exemple, pour avoir la partition boot (/dev/sda2) en ext2 et la partition racine (/dev/sda4) en ext4 comme utilisé dans l'exemple de structuration des partitions, les commandes suivantes doivent être utilisées :

root #mkfs.ext2 /dev/sda2
root #mkfs.ext4 /dev/sda4

Maintenant, créez les systèmes de fichiers sur les partitions nouvellement créées (ou sur les volumes logiques).

Activer la partition d'échange

mkswap est la commande à utiliser pour initialiser les partitions d'échange :

root #mkswap /dev/sda3

Pour activer la partition d'échange, utilisez la commande swapon :

root #swapon /dev/sda3

Créez et activez la partition d'échange avec les commandes mentionnées ci-dessus.

Monter la partition racine

Maintenant que les partitions sont initialisées et hébergent un système de fichiers, il est temps de les monter. Utilisez la commande mount, mais n'oubliez pas de créer les points de montage nécessaires pour chaque partition. À titre d'exemple, nous montons la partition racine :

root #mount /dev/sda4 /mnt/gentoo
Remarque
Si /tmp/ doit se trouver sur une partition séparée, pensez à changer ses droits d'accès après le montage :
root #chmod 1777 /mnt/gentoo/tmp
Cela vaut également pour /var/tmp.

Plus loin dans les instructions, le système de fichiers proc (une interface virtuelle avec le noyau) ainsi que d'autres pseudos systèmes de fichiers du noyau seront montés. Mais d'abord, nous devons installer les fichiers d'installation de Gentoo.