Gentoo Linux mips Handbuch: Gentoo installieren

From Gentoo Wiki
Jump to: navigation, search
This page is a translated version of the page Handbook:MIPS/Full/Installation and the translation is 100% complete.

Contents

Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎polski • ‎русский • ‎українська • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
MIPS Handbuch
Installation
Über die Installation
Auswahl des Mediums
Konfiguration des Netzwerks
Vorbereiten der Festplatte(n)
Installation des Stage Archivs
Installation des Basissystems
Konfiguration des Kernels
Konfiguration des Systems
Installation der Tools
Konfiguration des Bootloaders
Abschluss
Arbeiten mit Gentoo
Portage-Einführung
USE-Flags
Portage-Features
Initskript-System
Umgebungsvariablen
Arbeiten mit Portage
Dateien und Verzeichnisse
Variablen
Mischen von Softwarezweigen
Zusätzliche Tools
Eigener Portage-Tree
Erweiterte Portage-Features
Netzwerk-Konfiguration
Zu Beginn
Fortgeschrittene Konfiguration
Modulare Vernetzung
Drahtlose Netzwerke
Funktionalität hinzufügen
Dynamisches Management


Einleitung

Willkommen

Herzlich willkommen bei Gentoo. Sie sind dabei, in die Welt der Wahlmöglichkeiten und Performance einzusteigen. Bei Gentoo dreht sich vieles um Auswahlmöglichkeiten. Während der Installation von Gentoo wird Ihnen das mehrfach bewusst werden - Sie haben die Wahl, wie viele Pakete Sie selbst kompilieren, wie Sie Gentoo installieren, welchen Systemlogger Sie benutzen und vieles mehr.

Gentoo ist eine schnelle, moderne Metadistribution mit einem klaren und flexiblen Design. Gentoo ist auf einem Ökosystem freier Software gebaut und versteckt das, was unter der Haube steckt, nicht vor seinen Benutzern. Portage, das von Gentoo benutzte Paketmanagementsystem, ist in Python geschrieben, was bedeutet, dass Sie sich die Quelltexte einfach anschauen und nach Belieben verändern können. Gentoos Paketsystem benutzt den Quelltext (obwohl auch Unterstützung für vorkompilierte Pakete vorhanden ist) und die Konfiguration von Gentoo findet in normalen Textdateien statt. Mit anderen Worten: Offenheit überall.

Es ist sehr wichtig, dass jeder versteht, dass Auswahlmöglichkeiten das sind, was Gentoo ausmacht. Wir zwingen Sie nicht, irgendetwas zu tun, was Sie nicht möchten. Sollte das doch mal vorkommen, sagen Sie uns Bescheid.

Wie ist die Installation strukturiert

Die Installation von Gentoo kann als eine Prozedur von 10 Schritten gesehen werden, was den Kapiteln 2 bis 11 entspricht. Jeder Schritt führt zu einem bestimmten Ergebnis:

Schritt Ergebnis
1 Der Anwender befindet sich in einer funktionierenden Umgebung aus der Gentoo installiert werden kann.
2 Die Internetverbindung ist für die Gentoo-Installation vorbereitet.
3 Die Festplatten sind für die Gentoo-Installation vorbereitet.
4 Die Installationsumgebung ist vorbereitet und der Anwender ist bereit zum "Chroot" in die neue Umgebung.
5 Die Kernpakete, die in allen Gentoo-Installationen gleich sind, sind installiert.
6 Der Linux-Kernel ist installiert.
7 Der Anwender hat die meisten Gentoo-Systemkonfigurationsdateien konfiguriert.
8 Die notwendigen System-Tools sind installiert.
9 Der gewählte Bootloader ist installiert und konfiguriert.
10 Die neu installierte Gentoo Linux Umgebung ist bereit entdeckt zu werden.

Wenn Ihnen verschiedene Auswahlmöglichkeiten vorgestellt werden, geben wir unser Bestes, Ihnen die jeweiligen Vor- und Nachteile vorzustellen. Im weiteren Text wird zunächst eine Standardauswahl beschrieben (die im Titel durch "Standard:" gekennzeichnet ist), und anschließend die anderen Wahlmöglichkeiten (markiert durch "Alternativ:"). Die Standardauswahl ist nicht unbedingt das, was wir empfehlen. Es ist der Weg, von dem wir denken, dass ihn die meisten Gentoo-Benutzer nehmen werden.

Manchmal können Sie optionalen Schritten folgen. Solche Schritte sind als "Optional:" gekennzeichnet und nicht unbedingt notwendig, um Gentoo zu installieren. Dennoch können optionale Schritte von vorherigen Entscheidungen abhängen. Wir informieren Sie, wenn das passiert. Sowohl wenn Sie die Entscheidung treffen, als auch wenn der optionale Schritt beschrieben wird.

Installationsoptionen von Gentoo

Gentoo kann auf vielen verschiedenen Wegen installiert werden. Sie können ein offizielles Gentoo Installationsmedium wie die Images für unsere CDs und DVDs herunterladen. Dieses Image kann auf einen USB-Stick kopiert oder aus dem Netzwerk gebootet werden. Alternativ können Sie Gentoo von einem nicht offiziellem Medium, wie zum Beispiel aus einer bereits installierten Distribution heraus oder von einem anderen, nicht von Gentoo herausgegebenen, bootbaren Datenträger (wie z.B. Knoppix) installieren.

Dieses Dokument beschreibt die Installation mit einem offiziellen Gentoo Installations-Datenträger, oder, in bestimmten Fällen, Netboot. Wir gehen davon aus, dass Sie die aktuellste Version eines jeden Pakets installieren wollen.

Notiz
Für weitere Hilfe zu den anderen Installationsmöglichkeiten, einschließlich der Nutzung von nicht-Gentoo CDs, lesen Sie bitte unseren Leitfaden über alternative Installationsmethoden.

Wir bieten ebenfalls ein Gentoo Installation Tipps & Tricks-Dokument, das weitere nützliche Informationen enthält.

Probleme?

Wenn Sie ein Problem während der Installation (oder in der Dokumentation) entdecken, schauen Sie bitte in unserem Bug-Tracking-System, ob der Fehler bereits bekannt ist. Wenn nicht, erstellen Sie bitte einen Fehlerbericht, damit wir uns der Sache annehmen können. Haben Sie keine Angst vor den Entwicklern, denen Ihr Fehlerbericht zugeteilt wird -- für gewöhnlich essen sie keine Menschen.

Beachten Sie aber, dass dieses Dokument, welches Sie gerade lesen, architekturspezifisch ist, auch wenn es Referenzen zu anderen Architekturen enthält. Dies liegt daran, dass große Teile des Gentoo Handbuchs Textquellen verwenden, welche für alle Architekturen gleichermaßen verwendet werden (um doppelten Arbeitsaufwand und die Verschwendung von Entwicklungsressourcen zu verhindern). Wir werden versuchen dies auf ein Minimum zu beschränken um Missverständnisse zu vermeiden.

Wenn Sie sich nicht sicher sind, ob ein Problem ein Benutzerproblem ist (ein Fehler, den Sie trotz sorgfältiger Lektüre dieser Dokumentation machen) oder ein Softwareproblem (ein Fehler, den wir trotz sorgfältigen Tests der Installation/Dokumentation begangen haben) sollten Sie den Channel #gentoo-de im irc.freenode.net Netz besuchen, ansonsten sind Sie natürlich auch so willkommen, da unser Chat-Channel alle Gentoo-Themen abdeckt.

Apropos, wenn Sie eine weitere Frage hinsichtlich Gentoo haben, werfen Sie zunächst einen Blick in den Artikel häufig gestellten Fragen (FAQ) hier im Wiki. Sie können auch die FAQs in unserem Forum lesen.





Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎polski • ‎русский • ‎українська • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
MIPS Handbuch
Installation
Über die Installation
Auswahl des Mediums
Konfiguration des Netzwerks
Vorbereiten der Festplatte(n)
Installation des Stage Archivs
Installation des Basissystems
Konfiguration des Kernels
Konfiguration des Systems
Installation der Tools
Konfiguration des Bootloaders
Abschluss
Arbeiten mit Gentoo
Portage-Einführung
USE-Flags
Portage-Features
Initskript-System
Umgebungsvariablen
Arbeiten mit Portage
Dateien und Verzeichnisse
Variablen
Mischen von Softwarezweigen
Zusätzliche Tools
Eigener Portage-Tree
Erweiterte Portage-Features
Netzwerk-Konfiguration
Zu Beginn
Fortgeschrittene Konfiguration
Modulare Vernetzung
Drahtlose Netzwerke
Funktionalität hinzufügen
Dynamisches Management


Hardwareanforderungen

CPU (Big Endian port) MIPS3, MIPS4, MIPS5 or MIPS64-class CPU
CPU (Little Endian port) MIPS4, MIPS5 or MIPS64-class CPU
Memory 128 MB
Disk space 3.0 GB (excluding swap space)
Swap space At least 256 MB

Schauen Sie sich den Artikel MIPS Hardware Requirementsen im Gentoo Wiki an.

Bemerkungen zur Installation

On many architectures, the processor has gone through several generations, each newer generation builds on the foundation of the previous one. MIPS is no exception. There are several generations of CPU covered under the MIPS architecture. In order to choose the right netboot image stage tarball and CFLAGS appropriately, it is necessary to be aware of which family the system's CPU belongs in. These families are referred to as the Instruction Set Architecture.

MIPS ISA 32/64-bit CPUs Covered
MIPS 1 32-bit R2000, R3000
MIPS 2 32-bit R6000
MIPS 3 64-bit R4000, R4400, R4600, R4700
MIPS 4 64-bit R5000, RM5000, RM7000 R8000, R9000, R10000, R12000, R14000, R16000
MIPS 5 4-bit None As Yet
MIPS32 32-bit AMD Alchemy series, 4kc, 4km, many others... There are a few revisions in the MIPS32 ISA.
MIPS64 64-bit Broadcom SiByte SB1, 5kc ... etc... There are a few revisions in the MIPS64 ISA.
Notiz
Die MIPS5 ISA Ebene wurde im Jahr 1994 von Silocon Graphics entworfen, aber eigentlich nie wirklich in einer richtigen CPU verwendet. Sie lebt aber als Teil der MIPS64 ISA weiter.
Notiz
Die MIPS32 und MIPS64 ISAs sind häufig eine Quelle der Verwirrung. Die MIPS64 ISA Ebene ist eigentlich eine Obermenge der MIPS5 ISA. Als solche enthält Sie alle Befehle von MIPS5 und früherer ISAs. MIPS32 ist die 32-Bit Untermenge von MIPS64. Sie existiert, weil die meisten Anwendungen nur 32-Bit Verarbeitung erfordern.

Ein weiteres wichtiges zu erfassendes Konzept ist das der Byte-Reihenfolge (Endianness). Die Byte-Reihenfolge bezieht sich auf die Art, in der eine CPU ein Datenwort aus dem Arbeitsspeicher liest. Ein Datenwort kann entweder als Big-Endian (höherwertiges Byte bei der niedrigeren Speicheradresse) oder als Little-Endian (niederwertiges Byte bei der niedrigeren Speicheradresse) gelesen werden. Intel x86 Maschinen verwenden grundsätzlich Little-Endian, Apple und Sparc Maschinen hingegen Big-Endian. MIPS können entweder das eine oder das andere sein. Um beide Arten zu unterscheiden hängen wir zur Kennzeichnung von Little-Endian el an den Architekturnamen.

Architecture 32/64-bit Endianness Machines covered
mips 32-bit Big Endian Silicon Graphics
mipsel 32-bit Little Endian Cobalt Servers
mips64 64-bit Big Endian Silicon Graphics
mips64el 64-bit Little Endian Cobalt Servers

For those willing to learn more about ISAs, the following websites may be of assistance:

Netboot Übersicht

In this section, we'll cover what is needed to successfully network boot a Silicon Graphics workstation or Cobalt Server appliance. This is just a brief guide, it is not intended to be thorough, for more information, it is recommended to read the Diskless nodes article.

Abhängig von der Maschine gibt es eine gewisse Menge an Hardware die zum Netboot und zur Linux-Installation benötigt wird.

  • Grundsätzlich:
    • DHCP/BOAMD Alchemy Serie, 4kc, 4km, viele andere ... Es gibt ein paar Revisionen von MIPS32 ISA.OTP Server (ISC DHCPd empfohlen)
    • Geduld -- und viel davon
  • Für Silicon Graphics Workstations:
    • TFTP Server (tftp-hpa empfohlen)
    • Wenn die serielle Konsole verwendet werden muss:
      • MiniDIN8 --> RS-232 serielles Kabel (nur für IP22 und IP28 Systeme benötigt)
      • Nullmodem-Kabel
      • VT100 oder ANSI kompatibles Terminal, 9600 Baud fähig
  • Für Cobalt Server (NICHT der original Qube):
    • NFS Server
    • Nullmodem-Kabel
    • VT100 oder ANSI kompatibles Terminal, 115200 Baud fähig
Notiz
SGI Maschinen verwenden einen Mini-DIN-8 Anschluss für die seriellen Ports. Anscheinend funktionieren Apple Modemkabel als serielle Kabel gut. Seit es Apple Maschinen mit USB und internen Modems gibt, findet man diese Kabel aber immer schwerer. Ein Verdrahtungsplan ist im Linux/MIPS Wiki zu finden. Die meisten Elektronikläden sollten die erforderlichen Stecker auf Lager haben.
Notiz
Als Terminal kann ein echtes VT100/ANSI Terminal oder ein PC mit einer Terminal Emulation Software (wie HyperTerminal, Minicom, seyon, Telex, xc, screen -- was auch immer Sie bevorzugen) zum Einsatz kommen. Es spielt keine Rolle auf welcher Plattform diese Maschine läuft -- solange Sie einen seriellen RS-232 Anschluss hat und passende Software.
Notiz
This guide does NOT cover the original Qube. The original Qube server appliance lacks a serial port in its default configuration, and therefore it is not possible to install Gentoo onto it without the aid of a screwdriver and a surrogate machine to do the installation.

TFTP und DHCP einrichten

Wie bereits erwähnt ist dies keine komplette Anleitung. Es ist ein Grundgerüst, das die Dinge nur ins Rollen bringt. Verwenden Sie es um ein Setup von Grund auf neu zu beginnen, oder nutzen Sie die Vorschläge zur Erweiterung eines bestehenden Setup mit Netboot-Unterstützung.

Es ist erwähnenswert, dass die genutzten Server nicht Gentoo Linux verwenden müssen. Sie können auch gut und gerne FeeBSD oder jede andere Unix-ähnliche Plattform nutzen. Dieser Leitfaden geht von der Verwendung von Gentoo Linux aus. Wenn gewünscht, ist es auch möglich TFTP/NFS auf einer separaten Maschine am DHCP Server zu betreiben.

Warnung
Das Gentoo/MIPS Team kann Ihnen beim Einrichten anderer Betriebssysteme als Netboot-Server nicht helfen.

Erster Schritt -- DHCP konfigurieren. Damit der ISC DHCP Daemon auf BOOTP anfragen reagiert (wie es vom SGI und Cobalt BOOTROM benötigt wird) Aktivieren Sie als erstes das dynamische BOOTP für den verwendeten Adressbereich. Dann erstellen Sie einen Eintrag für jeden Client mit Zeigern auf das Bootabbild.

root #emerge --ask net-misc/dhcp

Once installed, create the /etc/dhcp/dhcpd.conf file. Here's a bare-bones config to get started.

DATEI /etc/dhcp/dhcpd.confBare Bones dhcpd.conf
# Tell dhcpd to disable dynamic DNS.
# dhcpd will refuse to start without this.
ddns-update-style none;
  
# Create a subnet:
subnet 192.168.10.0 netmask 255.255.255.0 {
  # Address pool for our booting clients. Don't forget the 'dynamic-bootp' bit!
  pool {
    range dynamic-bootp 192.168.10.1 192.168.10.254;
  }
  
  # DNS servers and default gateway -- substitute as appropriate
  option domain-name-servers 203.1.72.96, 202.47.56.17;
  option routers 192.168.10.1;
  
  # Tell the DHCP server it's authoritative for this subnet.
  authoritative;
  
  # Allow BOOTP to be used on this subnet.
  allow bootp;
}

Mit diesem Setup kann man eine beliebige Anzahl von Clients im Subnetz-Abschnitt hinzufügen. Wir besprechen das später in dieser Anleitung.

Next step - Setting up TFTP server. It is recommended to use tftp-hpa as it is the only TFTP daemon known to work correctly. Proceed by installing it as shown below:

root #emerge --ask net-ftp/tftp-hpa

Dies erzeugt das Verzeichnis /tftproot zur Aufbewahrung der Netboot Abbilder. Verschieben Sie es an eine andere Stelle, falls notwendig. Zum Zwecke dieser Anleitung wird davon ausgegangen, dass es an der vorgegebenen Stelle verbleibt.

Netboot auf SGI Stationen

Netboot Abbild herunterladen

Je nach System für das die Installation gedacht ist, gibt es mehrere mögliche Images zum Download. Diese sind je nach System- und CPU-Typ benannt für den Sie kompiliert wurden. Die Maschinentypen sind wie folgt:

Codename Machines
IP22 Indy, *Indigo 2, Challenge S
IP26 *Indigo 2 Power
IP27 Origin 200, Origin 2000
IP28 *Indigo 2 Impact
IP30 Octane
IP32 O2
Notiz
Indigo 2 - It is a common mistake to mix up the IRIS Indigo (IP12 w/ R3000 CPU or IP20 with a R4000 CPU, neither of which run Linux), the Indigo 2 (IP22, which runs Linux fine), the R8000-based Indigo 2 Power (which doesn't run Linux at all) and the R10000-based Indigo 2 Impact (IP28, which is highly experimental). Please bear in mind that these are different machines.

Also in the filename, r4k refers to R4000-series processors, r5k for R5000, rm5k for the RM5200 and r10k for R10000. The images are available on the Gentoo mirrors.

DHCP Konfiguration für einen SGI Client

After downloading the file, place the decompressed image file in the /tftproot/ directory. (Use bzip2 -d to decompress). Then edit the /etc/dhcp/dhcpd.conf file and add the appropriate entry for the SGI client.

DATEI /etc/dhcp/dhcpd.confSGI Workstation Abschnitt
subnet xxx.xxx.xxx.xxx netmask xxx.xxx.xxx.xxx {
  # ... anderes gewöhnliches Zeug ...
  
  # SGI Workstation ... ändern Sie 'sgi' in den Hostname Ihrer SGI Maschine.
  host sgi {
  
    # MAC Adresse der SGI Maschine.
    # Steht normalerweise auf der Rückseite oder Bodenplatte der Maschine.
    hardware ethernet 08:00:69:08:db:77;
  
    # Download TFTP Server (standardmäßig derselbe wie der DHCP Server)
    next-server 192.168.10.1;
  
    # IP Adresse der SGI Maschine
    fixed-address 192.168.10.3;
  
    # Dateiname der herunterzuladenden und zu bootenden PROM Datei
    filename "/gentoo-r4k.img";
  }
}

Kernel Optionen

Wir sind fast fertig, aber es gibt noch ein paar Optimierungen durchzuführen. Öffnen Sie eine Konsole mit Root-Privilegien.

Disable "Path Maximum Transfer Unit", otherwise SGI PROM won't find the kernel:

root #echo 1 > /proc/sys/net/ipv4/ip_no_pmtu_disc

Stellen Sie den vom SGI PROM nutzbaren Port-Bereich ein:

root #echo "2048 32767" > /proc/sys/net/ipv4/ip_local_port_range

Dies sollte ausreichend sein, damit der Linux Server mit dem SGI PROM zusammenspielt.

Starting the daemons

Starten Sie hier die Dienste.

root #/etc/init.d/dhcp start
root #/etc/init.d/in.tftpd start

If nothing went wrong in that last step then everything is all set to power on the workstation and proceed with the guide. If the DHCP server isn't firing up for whatever reason, try running dhcpd on the command line and see what it says - if all is well, it should just fork into the background, otherwise it will display 'exiting.' just below its complaint.

Eine einfache Möglichkeit zum Test ob der TFTP Daemon ausgeführt wird ist den folgenden Befehl einzugeben und seine Ausgabe zu prüfen:

root #netstat -al | grep ^udp
udp        0      0 *:bootpc                *:*
udp        0      0 *:631                   *:*
udp        0      0 *:xdmcp                 *:*
udp        0      0 *:tftp                  *:* <-- (suchen Sie nach dieser Zeile)

Netboot der SGI Station

Okay, everything is set, DHCP is running as is TFTP. Now it is time to fire up the SGI machine. Power the unit on - when "Running power-on diagnostics" comes on the screen, either click "Stop For Maintenance" or press Escape. A menu similar to the following will show up.

Running power-on diagnostics
System Maintenance Menu
  
1) Start System
2) Install System Software
3) Run Diagnostics
4) Recover System
5) Enter Command Monitor
Option?

Geben Sie 5 ein, um zum 'Command Monitor' zu gelangen. Starten Sie den BootP Vorgang:

>>bootp(): root=/dev/ram0

Ab diesem Zeitpunkt sollte die Maschine den Download des Images beginnen und ungefähr 20 Sekunden später das Booten von Linux. Wenn alles gut geht, wird eine BusyBox ash shell wie unten gezeigt gestartet und die Installation von Gentoo Linux kann weitergehen.

CODE Wenn alles gut geht ...
init started:  BusyBox v1.00-pre10 (2004.04.27-02:55+0000) multi-call binary
  
Gentoo Linux; http://www.gentoo.org/
 Copyright 2001-2004 Gentoo Technologies, Inc.; Distributed under the GPL
  
 Gentoo/MIPS Netboot for Silicon Graphics Machines
 Build Date: April 26th, 2004
  
 * To configure networking, do the following:
  
 * For Static IP:
 * /bin/net-setup <IP Address> <Gateway Address> [telnet]
  
 * For Dynamic IP:
 * /bin/net-setup dhcp [telnet]
  
 * If you would like a telnetd daemon loaded as well, pass "telnet"
 * As the final argument to /bin/net-setup.
  
Please press Enter to activate this console.

Fehlerbehebung

If the machine is being stubborn and refusing to download its image, it can be one of two things:

  1. The instructions were not followed correctly, or
  2. It needs a little gentle persuasion (No, put that sledge hammer down!)

Here's a list of things to check:

  • dhcpd is giving the SGI Machine an IP Address. There should be some messages about a BOOTP request in the system logs. tcpdump is also useful here.
  • Permissions are set properly in the tftp folder (typically /tftproot/ - should be world readable)
  • Check system logs to see what the tftp server is reporting (errors perhaps)

Wenn Sie alles auf dem Server überprüft haben und Timeouts oder andere Fehler auf der SGI Maschine aufgetreten sind, geben Sie dies in die Konsole ein:

>>resetenv
>>unsetenv netaddr
>>unsetenv dlserver
>>init
>>bootp(): root=/dev/ram0

Netboot auf Cobalt Stationen

Übersicht des Netboot Verfahrens

Unlike the SGI machines, Cobalt servers use NFS to transfer their kernel for booting. Boot the machine by holding down the left & right arrow buttons whilst powering the unit on. The machine will then attempt to obtain an IP number via BOOTP, mount the /nfsroot/ directory from the server via NFS, then try to download and boot the file vmlinux_raq-2800.gz (depending on the model) which it assumes to be a standard ELF binary.

Cobalt Netboot Abbild herunterladen

Inside http://distfiles.gentoo.org/experimental/mips/historical/netboot/cobalt/ the necessary boot images for getting a Cobalt up and running are made available. The files will have the name nfsroot-KERNEL-COLO-DATE-cobalt.tar - select the most recent one and unpack it to / as shown below:

root #tar -C / -xvf nfsroot-2.6.13.4-1.19-20051122-cobalt.tar

NFS Serverkonfiguration

Weil diese Maschinen NFS zum Download seines Images verwendet, ist es notwendig /nfsroot/ auf dem Server zu exportieren. Installieren Sie das Paket net-fs/nfs-utils:

root #emerge --ask net-fs/nfs-utils

Wenn das erledigt ist, schreiben Sie das Folgende in die Datei /etc/exports.

DATEI /etc/exportsExporting the /nfsroot directory
/nfsroot      *(ro,sync)

Starten Sie nun den NFS Server:

root #/etc/init.d/nfs start

Wenn der NFS Server bereits zu diesem Zeitpunkt ausgeführt wurde sagen Sie ihm mit exportfs, dass er erneut einen Blick auf seine exports Datei werfen soll.

root #exportfs -av

DHCP Konfiguration für eine Cobalt Maschine

Nun ist die DHCP Seite der Dinge relativ unkompliziert. Fügen Sie das Folgende der Datei /etc/dhcp/dhcpd.conf hinzu.

DATEI /etc/dhcp/dhcpd.confSnippet for Cobalt server
subnet xxx.xxx.xxx.xxx netmask xxx.xxx.xxx.xxx {
  # ... usual stuff here ...
  
  # Configuration for a Cobalt Server
  # Set the hostname here:
  host qube {
    # Path to the nfsroot directory.
    # This is mainly for when using the TFTP boot option on CoLo
    # You shouldn't need to change this.
    option root-path "/nfsroot";
  
    # Cobalt server's ethernet MAC address
    hardware ethernet 00:10:e0:00:86:3d;
  
    # Server to download image from
    next-server 192.168.10.1;
  
    # IP address of Cobalt server
    fixed-address 192.168.10.2;
  
    # Location of the default.colo file relative to /nfsroot
    # You shouldn't need to change this.
    filename "default.colo";
  }
}

Starten der Dienste

Zum Starten der Dienste geben Sie folgendes ein:

root #/etc/init.d/dhcp start
root #/etc/init.d/nfs start

If nothing went wrong in that last step all should be set to power on the workstation and proceed with the guide. If the DHCP server isn't firing up for whatever reason, try running dhcpd on the command line and see what it tells - if all is well, it should just fork into the background, otherwise it will show 'exiting.' just below its complaint.

Netboot der Cobalt Maschine

Now it is time to fire up the Cobalt machine. Hook up the null modem cable, and set the serial terminal to use 115200 baud, 8 bits, no parity, 1 stop bit, VT100 emulation. Once that is done, hold down the left and right arrow buttons whilst powering the unit on.

Das Display auf der Rückseite sollte "Net Booting" anzeigen und einige Netzwerkaktivität sollte sichtbar sein, dicht gefolgt von CoLo. Scrollen Sie auf der rückwärtigen Anzeige nach unten bis zur "Network (NFS)" Option und drücken Sie Enter. Beachten Sie, dass die Maschine auf der seriellen Konsole zu booten beginnt.

...
elf: 80080000 <-- 00001000 6586368t + 192624t
elf: entry 80328040
net: interface down
CPU revision is: 000028a0
FPU revision is: 000028a0
Primary instruction cache 32kB, physically tagged, 2-way, linesize 32 bytes.
Primary data cache 32kB 2-way, linesize 32 bytes.
Linux version 2.4.26-mipscvs-20040415 (root@khazad-dum) (gcc version 3.3.3...
Determined physical RAM map:
 memory: 08000000 @ 00000000 (usable)
Initial ramdisk at: 0x80392000 (3366912 bytes)
On node 0 totalpages: 32768
zone(0): 32768 pages.
zone(1): 0 pages.
zone(2): 0 pages.
Kernel command line: console=ttyS0,115200 root=/dev/ram0
Calibrating delay loop... 249.85 BogoMIPS
Memory: 122512k/131072k available (2708k kernel code, 8560k reserved, 3424k dat)

Eine BusyBox ash Shell wird sich wie unten gezeigt öffnen, aus der die Gentoo Linux Installation fortgesetzt werden kann.

CODE Wenn alles gut geht ...
VFS: Mounted root (ext2 filesystem) readonly.
Freeing unused kernel memory: 280k freed
init started:  BusyBox v1.00-pre10 (2004.04.27-02:55+0000) multi-call binary
  
Gentoo Linux; http://www.gentoo.org/
 Copyright 2001-2004 Gentoo Technologies, Inc.; Distributed under the GPL
  
 Gentoo/MIPS Netboot for Cobalt Microserver Machines
 Build Date: April 26th, 2004
  
 * To configure networking, do the following:
  
 * For Static IP:
 * /bin/net-setup <IP Address> <Gateway Address> [telnet]
  
 * For Dynamic IP:
 * /bin/net-setup dhcp [telnet]
  
 * If you would like a telnetd daemon loaded as well, pass "telnet"
 * As the final argument to /bin/net-setup.
  
Please press Enter to activate this console.

Fehlerbehebung

If the machine is being stubborn and refusing to download its image, it can be one of two things:

  1. the instructions have not been followed correctly, or
  2. it needs a little gentle persuasion. (No, put that sledge hammer down!)

Here's a list of things to check:

  • dhcpd is giving the Cobalt Machine an IP Address. Notice messages about a BOOTP request in the system logs. tcpdump is also useful here.
  • Permissions are set properly in the /nfsroot/ folder (should be world readable).
  • Make sure the NFS server is running and exporting the /nfsroot/ directory. Check this using exportfs -v on the server.


Eine Installations-CD verwenden

Auf Silicon Graphics Maschinen ist es möglich von einer CD zu booten um Betriebssysteme zu installieren. (So istalliert man zum Beispiel IRIX.) Seit kurzem wurden Abbilder für solche bootbaren CDs zur Installation von Gentoo möglich. Diese CDs sind dafür entworfen, um in der gleichen Weise zu funktionieren.

Momentan funktioniert die Gentoo/MIPS Live-CD nur auf den SGI Indy, Indigo 2 und O2 Workstations, die mit der R4000 und R5000 CPU Serie ausgestattet sind. In der Zukunft können aber auch andere Plattformen möglich sein.

Die Live-CD Abbilder können auf einem Gentoo Spiegelserver unter dem Verzeichnis experimental/mips/livecd/ gefunden werden.

Warnung
Diese CDs sind zu diesem Zeitpunkt sehr experimentell. Es ist möglich, dass sie funktionieren oder nicht funktionieren. Bitte melden Sie Erfolg oder Fehler entweder auf Bugzilla, diesem Forumsbeitrag oder im #gentoo-mips IRC-Kanal.




Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎polski • ‎русский • ‎українська • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
MIPS Handbuch
Installation
Über die Installation
Auswahl des Mediums
Konfiguration des Netzwerks
Vorbereiten der Festplatte(n)
Installation des Stage Archivs
Installation des Basissystems
Konfiguration des Kernels
Konfiguration des Systems
Installation der Tools
Konfiguration des Bootloaders
Abschluss
Arbeiten mit Gentoo
Portage-Einführung
USE-Flags
Portage-Features
Initskript-System
Umgebungsvariablen
Arbeiten mit Portage
Dateien und Verzeichnisse
Variablen
Mischen von Softwarezweigen
Zusätzliche Tools
Eigener Portage-Tree
Erweiterte Portage-Features
Netzwerk-Konfiguration
Zu Beginn
Fortgeschrittene Konfiguration
Modulare Vernetzung
Drahtlose Netzwerke
Funktionalität hinzufügen
Dynamisches Management


Automatische Netzwerk-Erkennung

Vielleicht funktioniert es einfach?

Wenn sich Ihr System in einem Ethernet-Netzwerk mit einem DHCP-Server befindet, ist es sehr wahrscheinlich, dass Ihr Netz bereits konfiguriert ist. Sie können nun die zahlreichen Netzwerktools auf der Installations-CD wie zum Beispiel ssh, scp, ping, irssi, wget und links nutzen.

Ermitteln der Interface-Namen

ifconfig

Wenn das Netzwerk bereits konfiguriert wurde, zeigt Ihnen der Befehl ifconfig weitere Netzwerkschnittstellen neben lo an. In dem folgenden Beispiel erscheint eth0.

root #ifconfig
eth0      Link encap:Ethernet  HWaddr 00:50:BA:8F:61:7A
          inet addr:192.168.0.2  Bcast:192.168.0.255  Mask:255.255.255.0
          inet6 addr: fe80::50:ba8f:617a/10 Scope:Link
          UP BROADCAST RUNNING MULTICAST  MTU:1500  Metric:1
          RX packets:1498792 errors:0 dropped:0 overruns:0 frame:0
          TX packets:1284980 errors:0 dropped:0 overruns:0 carrier:0
          collisions:1984 txqueuelen:100
          RX bytes:485691215 (463.1 Mb)  TX bytes:123951388 (118.2 Mb)
          Interrupt:11 Base address:0xe800 

Als Folge des Wechsels zu predictable network interface names, kann sich der Interface-Name deutlich von der alten "eth0"-Namens-Konvention unterscheiden. Aktuelle Installations-Medien zeigen möglicherweise Namen an wie: eno0, ens1, oder enp5s0. Suchen Sie nach dem Interface in der Ausgabe von ifconfig, das eine IP-Adresse aus Ihrem lokalen Netwerk hat.

Tip
Wenn die Ausgabe von ifconfig keine Interfaces anzeigt, starten Sie das Kommando noch einmal mit der Option -a. Mit dieser Option zeigt ifconfig alle vom System erkannten Interfaces, unabhängig davon, ob sie im Zustand "up" oder "down" sind. Wenn ifconfig -a keine Interfaces anzeigt, ist entweder die Hardware defekt oder der erforderliche Kernel-Treiber ist nicht geladen. Beide Fälle können nicht in diesem Handbuch besprochen werden. Bitte kontaktieren Sie #gentoo für Hilfe.

ip

Als Alternative zu ifconfig kann zur Anzeige von Interface-Namen das Kommando ip verwendet werden. Das folgende Beispiel zeigt die Ausgabe von ip addr. Die ausgegebenen Daten unterscheiden sich vom letzten Beispiel, weil das ip-Kommando auf einem anderen System eingegeben wurde:

root #ip addr
2: eno1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000
    link/ether e8:40:f2:ac:25:7a brd ff:ff:ff:ff:ff:ff
    inet 10.0.20.77/22 brd 10.0.23.255 scope global eno1
       valid_lft forever preferred_lft forever
    inet6 fe80::ea40:f2ff:feac:257a/64 scope link 
       valid_lft forever preferred_lft forever

Der Interface-Name in dem obigen Beispiel folgt hinter der Nummer - er ist eno1.

In dem Rest dieses Dokuments geht das Handbuch davon aus, dass das genutzte Netzwerk-Interface den Namen eth0 hat.

Optional: Konfiguration eines Proxies

Wenn Sie auf das Internet nur über einen Proxy-Server zugreifen können, müssen Sie während der Installation das System für die Verwendung des Proxy-Servers vorbereiten. Das ist aber recht einfach. Sie müssen dazu lediglich eine Variable mit den Informationen über den Proxy-Server setzen.

In den meisten Fällen können Sie den Hostnamen des Proxy-Servers in die Variable schreiben. Nehmen wir an, der Server ist proxy.gentoo.org und der Port ist 8080.

Zur Einrichtung eines HTTP-Proxies (für HTTP- und HTTPS-Traffic):

root #export http_proxy="http://proxy.gentoo.org:8080"

Zur Einrichtung eines FTP-Proxies:

root #export ftp_proxy="ftp://proxy.gentoo.org:8080"

Zur Einrichtung eines RSYNC-Proxies:

root #export RSYNC_PROXY="proxy.gentoo.org:8080"

Wenn der Proxy-Server einen Benutzernamen und Passwort erfordert, sollten Sie die folgende Syntax in der Variable verwenden:

CODE Adding username/password to the proxy variable
http://username:password@proxy.gentoo.org:8080

Das Netzwerk testen

Dazu können Sie beispielsweise den DNS-Server Ihres Internetanbieters "anpingen". Die Adresse dieses Servers finden Sie in /etc/resolv.conf. Außerdem sollten Sie eine Webseite Ihrer Wahl "pingen". So stellen Sie sicher, dass Sie sowohl mit dem Internet verbunden sind, als auch, dass Ihre Namensauflösung korrekt funktioniert.

root #ping -c 3 www.gentoo.org

Wenn Sie nun in der Lage sind, Ihr Netzwerk zu verwenden, dann können Sie den Rest dieses Kapitels überspringen und mit dem Vorbereiten der Festplatte(n) fortfahren. Wenn nicht, lesen Sie bitte weiter.

Automatische Netzwerk-Konfiguration

Wenn die Netzwerkverbindung nicht gleich zu Stande kommt, beinhalten einige Installationsmedien den Befehl net-setup (für normale und drahtlose Verbindungen) oder pppoe-setup (für ADSL-Verbindungen) bzw. pptp (für PPTP-Benutzer).

Wenn Ihr Installationsmedium das entsprechende Tool nicht enthält oder Ihre Netzwerkverbindung noch nicht funktioniert, so fahren Sie bitte mit folgendem Abschnitt fort: Manuelle Netzwerkkonfiguration.

Standard: Verwendung von net-setup

Der einfachste Weg die Netzwerkverbindung zu konfigurieren, falls die automatische Konfiguration fehlgeschlagen sein sollte, ist das Skript net-setup auszuführen:

root #net-setup eth0

net-setup wird Ihnen einige Fragen bezüglich Ihrer Netzwerkumgebung stellen. Haben Sie alle Fragen beantwortet, sollten Sie eine funktionsfähige Netzwerkverbindung haben. Testen Sie Ihr Netzwerk wieder, wie oben beschrieben. Sollten die Tests funktionieren, so haben Sie es geschafft; Sie können nun mit der Installation von Gentoo fortfahren. Überspringen Sie den Rest dieses Kapitels und fahren Sie mit der Vorbereitung der Festplatte(n) fort.

Sollte Ihr Netzwerk nun immer noch nicht funktionieren, fahren Sie bitte mit Manuelle Netzwerkkonfiguration fort.

Alternativ: Verwendung von PPP

Für den Fall, dass Sie PPPoE benötigen, um eine Verbindung mit dem Internet herzustellen, bringt die Installations-CD (in jeder Version) das Tool ppp mit. Verwenden Sie das Skript pppoe-setup, um Ihre Verbindung zu konfigurieren. Sie werden nach der Netzwerkkarte gefragt, die mit Ihrem DSL-Modem verbunden ist, dem Benutzernamen und nach Ihrem Kennwort. Ferner geben Sie noch die IP-Adressen der DNS-Server des Providers ein und ob Sie eine Firewall benötigen oder nicht.

root #pppoe-setup
root #pppoe-start

Wenn etwas schief gehen sollte, überprüfen Sie bitte, ob Sie Ihren Benutzernamen und Ihr Passwort richtig eingegeben haben, indem Sie die Datei /etc/ppp/pap-secrets bzw. /etc/ppp/chap-secrets einsehen. Stellen Sie bitte auch sicher, dass Sie die richtige Netzwerkkarte verwenden. Wenn Ihre Netzwerkkarte im System nicht erkannt wird, müssen Sie das entsprechende Kernelmodul laden. In diesem Fall müssen Sie mit der Manuellen Konfiguration des Netzwerks fortfahren. Dort gehen wir näher auf das Laden der entsprechenden Kernelmodule ein.

Wenn alles funktioniert hat, dann fahren Sie mit dem nächsten Kapitel, Vorbereiten der Festplatte(n), fort.

Alternativ: Verwendung von PPTP

Wenn Sie PPTP-Unterstüzung benötigen, können Sie das Programm pptpclient, das Ihnen von der Installations-CD bereitgestellt wird, verwenden. Allerdings müssen Sie vorher sichergehen, dass Ihre Konfiguration korrekt ist. Dazu editieren Sie die Datei /etc/ppp/pap-secrets oder /etc/ppp/chap-secrets, so dass diese die korrekte Benutzername/Kennwort-Kombination beinhalten.

root #nano -w /etc/ppp/chap-secrets

Wenn nötig, sollten Sie nun noch /etc/ppp/options.pptp anpassen:

root #nano -w /etc/ppp/options.pptp

Nun geben Sie den Befehl pptp (mit den Optionen, die Sie in options.pptp setzen könnten) ein, um sich mit dem Server zu verbinden.

root #pptp <server ip>

Wenn alles funktioniert hat, dann fahren Sie mit dem Vorbereiten der Festplatte(n) fort.

Manuelle Netzwerk-Konfiguration

Die richtigen Kernelmodule laden

Wenn die Installations-CD bootet, versucht sie alle Ihre Hardwaregeräte zu erkennen und lädt automatisch die entsprechenden Kernelmodule (Treiber). In den allermeisten Fällen funktioniert dies sehr gut. Allerdings kann es vorkommen, dass ein Kernelmodul nicht automatisch geladen wird.

Wenn net-setup oder pppoe-setup fehlschlagen, dann ist es möglich, dass Ihre Netzwerkkarte nicht sofort gefunden wurde. Das bedeutet, dass Sie das entsprechende Kernelmodul manuell laden müssen.

Verwenden Sie ls, um herauszufinden, welche Netzwerk-Kernelmodule von Gentoo bereitgestellt werden.

root #ls /lib/modules/`uname -r`/kernel/drivers/net

Wenn Sie einen Treiber für Ihre Netzwerkkarte gefunden haben, laden Sie diesen mit modprobe. Zum Beispiel für das Modul pcnet32:

root #modprobe pcnet32

Benutzen Sie ifconfig zum Prüfen, ob das Modul geladen wurde. Eine erkannte Netzwerkkarte würde in etwa diese Ausgabe ergeben (bedenken Sie, dass eth0 wieder nur ein Beispiel ist):

root #ifconfig eth0
eth0      Link encap:Ethernet  HWaddr FE:FD:00:00:00:00  
          BROADCAST NOARP MULTICAST  MTU:1500  Metric:1
          RX packets:0 errors:0 dropped:0 overruns:0 frame:0
          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0
          collisions:0 txqueuelen:0 
          RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b)

Wenn Sie stattdessen diesen Fehler erhalten, dann wurde Ihre Karte nicht erkannt.

root #ifconfig eth0
eth0: error fetching interface information: Device not found

Die verfügbaren Netzwerkkarten in Ihrem System können über das /sys-Dateisystem aufgelistet werden:

root #ls /sys/class/net
dummy0  eth0  lo  sit0  tap0  wlan0

In obigem Beispiel wurden 6 Netzwerkkarten gefunden. Die Netzwerkkarte eth0 ist sehr wahrscheinlich die (kabelgebundene) Ethernet-Schnittstelle, wohingegen wlan0 die kabellose (WLAN) sein wird.

Wurde Ihre Netzwerkkarte erkannt, so können Sie nun erneut net-setup oder pppoe-setup ausprobieren (diese sollten nun funktionieren). Wir erklären Ihnen aber auch noch, wie man das Netzwerk manuell einrichtet.

Wählen Sie je nach Netzwerk-Setup einen der folgenden Abschnitte:

Verwendung von DHCP

DHCP (Dynamic Host Configuration Protocol) ermöglicht es die gesamte Netzwerkkonfiguration (IP-Adresse, Netzwerkmaske, Broadcast-Adresse, Gateway, DNS-Server etc.) dynamisch von einem Server zu beziehen. Das funktioniert logischerweise nur, wenn Sie einen DHCP-Server in Ihrem LAN haben oder Ihr Provider einen solchen Dienst anbietet. Benutzen Sie dhcpcd:

root #dhcpcd eth0

Einige Netzwerkadministratoren erfordern es, dass der Host- und Domainname, die vom DHCP-Server angeboten werdden, vom System genutzt werden. In diesem Fall verwenden Sie:

root #dhcpcd -HD eth0

Wenn das funktioniert (versuchen Sie einen Internet-Server zu pingen, z.B. Googles 8.8.8.8 oder Cloudflares 1.1.1.1), dann sind Sie fertig mit der Konfiguration des Netzwerks und können mit dem Vorbereiten der Festplatte(n) fortfahren.

Vorbereitung für drahtlosen Zugriff

Hinweis
Die Unterstützung für das Kommando iw kann architekturspezifisch sein. Wenn das Kommando nicht verfügbar ist, schauen Sie ob das Paket net-wireless/iw für die gewählte Architektur verfügbar ist. Das Kommando iw wird erst dann zur Verfügung stehen, wenn das Paket net-wireless/iw installiert ist.

Wenn Sie eine WLan-Karte (802.11) benutzen, müssen Sie Einstellungen zur Nutzung der Karte einrichten, bevor es weiter gehen kann. Um sich die aktuellen Einstellungen der Karte anzuschauen, benutzen Sie iw. iw zeigt Ihnen möglicherweise etwas wie dies:

root #iw dev wlp9s0 info
Interface wlp9s0
	ifindex 3
	wdev 0x1
	addr 00:00:00:00:00:00
	type managed
	wiphy 0
	channel 11 (2462 MHz), width: 20 MHz (no HT), center1: 2462 MHz
	txpower 30.00 dBm

Um zu überprüfen, ob eine Verbindung besteht:

root #iw dev wlp9s0 link
Not connected.

oder

root #iw dev wlp9s0 link
Connected to 00:00:00:00:00:00 (on wlp9s0)
	SSID: GentooNode
	freq: 2462
	RX: 3279 bytes (25 packets)
	TX: 1049 bytes (7 packets)
	signal: -23 dBm
	tx bitrate: 1.0 MBit/s
Hinweis
Einige drahtlose Netzwerkkarten benutzen einen Gerätenamen wie wlan0 oder ra0 anstelle von wlp9s0. Führen Sie ip link aus, um den korrekten Gerätenamen zu ermitteln.

Für die meisten Benutzer sind zum Herstellen einer Verbindung nur zwei Einstellungen notwendig: die ESSID (der Name des drahtlosen Netzes) und optional der WEP Key.

  • Stellen Sie als erstes sicher, dass das Interface im Zustand "up" ist:
root #ip link set dev wlp9s0 up
  • Um eine Verbindung mit einem offenen Netzwerk mit Namen GentooNode herzustellen:
root #iw dev wlp9s0 connect -w GentooNode
  • Wenn das Netzwerk nicht offen, sondern mit WEP verschlüsselt ist, und Sie einen WEP-Schlüssel im hexadezimalen Format haben: schreiben Sie das Prefix d: vor den Schlüssel:
root #iw dev wlp9s0 connect -w GentooNode key 0:d:1234123412341234abcd
  • Wenn Sie einen WEP-Schlüssel im ASCII-Format haben:
root #iw dev wlp9s0 connect -w GentooNode key 0:some-password
Hinweis
Falls Ihr drahtloses Netzwerk WPA oder WPA2 benutzt, werden Sie wpa_supplicant verwenden müssen. Für weitere Informationen zur Konfiguration drahtloser Netzwerke unter Gentoo Linux, lesen Sie bitte das Kapitel Drahtlose Netzwerkfunktionalität des Gentoo Handbuchs.

Sie können Ihre Einstellungen nun nochmal mit iw dev wlp9s0 link überprüfen. Wenn Sie Ihr WLAN nun eingerichtet haben, können Sie mit der Konfiguration der IP-Optionen wie im nächsten Abschnitt Verstehen der Netzwerk-Terminologie fortfahren oder net-setup benutzen, wie vorhin beschrieben.

Verstehen der Netzwerk-Terminologie

Hinweis
Wenn Sie Ihre IP-Adresse, Broadcast-Adresse, Netzmaske und DNS-Server kennen, dann können Sie diesen Teil beruhigt überspringen. Fahren Sie in diesem Fall mit Benutzen von ifconfig und route fort.

Wenn alles obige fehlschlägt, müssen Sie Ihr Netzwerk manuell einrichten. Dies ist überhaupt nicht schwierig. Jedoch müssen Sie mit einiger Netzwerkterminologie vertraut sein, denn Sie werden diese benötigen, um Ihr Netzwerk zu Ihrer Zufriedenheit konfigurieren zu können. Nachdem Sie dies gelesen haben, werden Sie wissen, was ein Gateway ist, wozu eine Netzmaske dient, wie eine Broadcast-Adresse aufgebaut ist und warum Sie Nameserver benötigen.

In einem Netzwerk werden die Computer über Ihre IP-Adresse (Internet Protocol Address) identifiziert. Diese Adresse ist eine Kombination aus vier Nummern zwischen 0 und 255. Jedenfalls nehmen wir das so wahr. In Wirklichkeit ist eine IP-Adresse eine 32-Bit-Folge (Nullen und Einsen). Hier ein Beispiel:

CODE Beispiel einer IPv4-Adresse
IP Address (numbers):   192.168.0.2
IP Address (bits):      11000000 10101000 00000000 00000010
                        -------- -------- -------- --------
                           192      168       0        2
Notiz
Der Nachfolger von IPv4, IPv6, verwendet 128 Bit (Nullen und Einsen). In diesem Abschnitt betrachten wir aber nur IPv4-Adressen.

Solch eine IP-Adresse ist einmalig für einen Host (Computer) in allen angrenzenden Netzwerken (d.h. jeder Host, den Sie erreichen können, muss eine einzigartige IP-Adresse besitzen). Um zwischen Hosts innerhalb eines Netzwerkes und außerhalb eines Netzwerkes unterscheiden zu können, ist die IP-Adresse in zwei Teile eingeteilt: Einen Network-Abschnitt und einen Host-Abschnitt.

Diese Unterteilung wird mittels der Netzmaske beschrieben. Die Netzmaske ist eine Reihe von Einsen, gefolgt von einer Reihe von Nullen. Der Teil der IP-Adresse der den Einsen entspricht, ist der Netzwerkteil. Die Netzmaske kann wie eine IP-Adresse aufgeschrieben werden.

CODE Beispiel von Netz/Host-Aufteilung
IP address:    192      168      0         2
            11000000 10101000 00000000 00000010
Netmask:    11111111 11111111 11111111 00000000
               255      255     255        0
           +--------------------------+--------+
                    Network              Host

In anderen Worten ist 192.168.0.14 ein Host in unserem Teilnetz, während 192.168.1.2 dies nicht ist.

Die Broadcast-Adresse ist eine IP-Adresse, die den gleichen Netzwerkteil wie unser Netzwerk hat, allerdings nur Einsen im Hostteil hat. Alle Computer in dem Teilnetz hören auf diese IP-Adresse. Diese Adresse ist zum Broadcasting eines Paketes an alle Computer gedacht, d.h. ein Paket wird an alle Computer im Netzwerk gleichzeitig geschickt.

CODE Broadcast-Adresse
IP address:    192      168      0         2
            11000000 10101000 00000000 00000010
Broadcast:  11000000 10101000 00000000 11111111
               192      168      0        255
           +--------------------------+--------+
                     Network             Host

Um im Internet surfen zu können, müssen Sie wissen, welcher Host die Internetverbindung herstellt. Dieser Host wird Gateway genannt. Da dieser ein normaler Host ist, besitzt auch das Gateway eine normale IP-Adresse (z.B. 192.168.0.1).

Zuvor haben wir schon erwähnt, dass jeder Host eine eigene IP-Adresse besitzt. Um diesen Host aber mit einem Namen ansprechen zu können (anstatt einer IP-Adresse) benötigen Sie einen Dienst, der Namen (wie dev.gentoo.org) in IP-Adressen (wie 64.5.62.82) umwandelt. Dieser Dienst wird nameservice genannt. Um diesen Dienst nutzen zu können, müssen Sie die entsprechenden name server kennen. Diese werden in der Datei /etc/resolv.conf festgehalten.

In manchen Fällen trägt das Gateway ebenfalls die Rolle des Nameservers. Sonst müssen Sie den Nameserver des Providers angeben.

In der Zusammenfassung benötigen Sie also folgende Daten bevor Sie fortfahren:

Netzwerkbegriff Beispiel
Ihre IP-Adresse 192.168.0.2
Netzmaske 255.255.255.0
Broadcast-Adresse 192.168.0.255
Gateway 192.168.0.1
Nameserver(s) 195.130.130.5, 195.130.130.133

Verwendung von ifconfig und route

Das Einrichten des Netzwerks besteht aus drei Schritten:

  1. Zuteilen einer IP-Adresse mittels ifconfig
  2. Einrichten des Routings zum Gateway mittels route
  3. Definieren der Nameserver-IPs in /etc/resolv.conf

Um eine IP-Adresse zuzuteilen, werden die IP-Adresse, die Broadcast-Adresse sowie die Netzmaske benötigt. Der folgende Befehl muss ausgeführt werden, wobei die Variablen ${IP_ADDR} durch die IP-Adresse, ${BROADCAST} durch die Broadcast-Adresse und ${NETMASK} durch die Netzmaske ersetzt werden sollten:

root #ifconfig eth0 ${IP_ADDR} broadcast ${BROADCAST} netmask ${NETMASK} up

Nun wird das Routing mit route eingerichtet. Hier muss ${GATEWAY} durch die IP-Adresse des Gateways ersetzt werden:

root #route add default gw ${GATEWAY}

Nun öffnen Sie /etc/resolv.conf:

root #nano -w /etc/resolv.conf

Tragen Sie den (oder die) Nameserver ein, wie im folgenden Beispiel gezeigt. Dabei sollten Sie natürlich wieder ${NAMESERVER1} und ${NAMESERVER2} durch die entsprechenden IP-Adressen ersetzen.

DATEI /etc/resolv.confDefault resolv.conf template
nameserver ${NAMESERVER1}
nameserver ${NAMESERVER2}

Das war es schon. Nun sollten Sie Ihre Internetverbindung testen. Dazu "pingen" Sie einfach einen Internetserver (wie Googles 8.8.8.8 or Cloudflares 1.1.1.1). Funktioniert es, sind Sie nun endlich bereit, Gentoo zu installieren. Fahren Sie mit dem Vorbereiten der Festplatte(n) fort.




Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎polski • ‎русский • ‎українська • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
MIPS Handbuch
Installation
Über die Installation
Auswahl des Mediums
Konfiguration des Netzwerks
Vorbereiten der Festplatte(n)
Installation des Stage Archivs
Installation des Basissystems
Konfiguration des Kernels
Konfiguration des Systems
Installation der Tools
Konfiguration des Bootloaders
Abschluss
Arbeiten mit Gentoo
Portage-Einführung
USE-Flags
Portage-Features
Initskript-System
Umgebungsvariablen
Arbeiten mit Portage
Dateien und Verzeichnisse
Variablen
Mischen von Softwarezweigen
Zusätzliche Tools
Eigener Portage-Tree
Erweiterte Portage-Features
Netzwerk-Konfiguration
Zu Beginn
Fortgeschrittene Konfiguration
Modulare Vernetzung
Drahtlose Netzwerke
Funktionalität hinzufügen
Dynamisches Management


Einführung in blockorientierte Geräte

Blockorientierte Geräte

Schauen wir uns die Festplatten-spezifischen Aspekte von Gentoo Linux und Linux im Allgemeinen an - insbesondere Linux Dateisysteme, Partitionen und blockorientierte Geräte (Block Devices). Wenn Sie die Vor- und Nachteile von Festplatten und Dateisystemen verstanden haben, können Sie Partitionen und Dateisysteme für die Linux-Installation erstellen.

Zu Beginn schauen wir uns blockorientierte Geräte an. Das berühmteste Block Device ist vermutlich jenes, das das erste Laufwerk eines Linux-Systems ist, nämlich /dev/sda. SCSI und serielle ATA Laufwerke werden beide /dev/sd* benannt. Sogar IDE Laufwerke werden mit dem libata Framework im Kernel so benannt. Bei der Verwendung des alten Geräte Frameworks ist das erste IDE Laufwerk /dev/hda.

Die oben genannten blockorientierten Geräte repräsentieren eine abstrakte Schnittstelle zur Festplatte. Benutzerprogramme können diese Block Devices nutzen, um mit der Festplatte zu interagieren, ohne sich darum sorgen zu müssen, ob die Festplatten über IDE, SCSI oder etwas anderem angebunden sind. Das Programm kann den Speicher auf der Festplatte einfach als eine Anhäufung zusammenhängender 512-Byte Blöcke mit wahlfreiem Zugriff ansprechen.


Partitionen

Obwohl es theoretisch möglich wäre eine vollständige Festplatte zu nutzen um ein Linux-System unterzubringen, kommt das in der Praxis fast nie vor. Stattdessen werden komplette Festplatten Block Devices in kleinere, besser handhabbare Block Devices unterteilt. Diese werden Partitionen genannt.

Ein Partitionsschema entwerfen

Wie viele Partitionen und wie groß?

Die Anzahl der Partitionen hängt stark von der Ziel-Umgebung ab. Wenn es beispielsweise viele Nutzer gibt, ist eine eigene Partition /home/ ratsam, da diese die Sicherheit erhöht und Backups vereinfacht. Wenn Gentoo installiert wird um als Mailserver zu dienen, dann sollte es ein eigenes /var/ geben, weil alle Mails in /var/ gespeichert werden. Eine gute Wahl des Dateisystems maximiert dann die Performance. Spiele-Server werden eine eigene Partition /opt/ besitzen, da die meiste Spiele-Server-Software dort installiert wird. Der Grund ist ähnlich wie für das /home/ Verzeichnis: Sicherheit und Backups. In den meisten Situationen muss /usr/ ausreichend groß sein: hier wird nicht nur die Mehrzahl der Anwendungen gespeichert, sondern auch das Gentoo ebuild Repository (standardmäßig unter: /var/db/repos/gentoo), das alleine schon rund 650 MiB benötigt. Diese Größenabschätzung enthält noch nicht den benötigten Plattenplatz für die Verzeichnisse binpkgs/ und distfiles/, die standardmäßig unter /var/cache/ gespeichert werden.

Es hängt also stark davon ab, was der Administrator erreichen möchte. Separate Partitionen oder Volumes haben folgende Vorteile:

  • Wählen Sie das performanteste Dateisystem für jede Partition oder jedes Volume.
  • Dem Gesamtsystem kann der freie Speicherplatz nicht ausgehen, wenn ein fehlerhaftes Tool kontinuierlich Dateien auf eine Partition oder ein Volume schreibt.
  • Falls nötig werden Dateisystemüberprüfungen zeitlich reduziert, da mehrere Überprüfungen gleichzeitig durchgeführt werden können. (Wenngleich dieser Vorteil eher bei mehreren Festplatte als bei Partitionen zum Tragen kommt.)
  • Sie können die Sicherheit erhöhen indem Sie einige Partitionen oder Volumes read-only, nosuid (setuid Flags werden ignoriert), noexec (executable Flags werden ignoriert) etc. einbinden.

Viele Partitionen können aber auch Nachteile haben. Wenn diese schlecht an das System angepasst sind, kann es sein, dass eine Partition voll ist und auf einer anderen Partition noch viel freier Platz verfügbar ist. Ein weiterer Nachteil besteht darin, dass separate Partitionen - vor allem für wichtige Mount-Pfade wie /usr/ oder /var/ - es häufig notwendig machen, während des Bootens ein initramfs zu benutzen, welches diese Partitionen vor der Ausführung anderer Boot-Skripte mountet. Das ist aber nicht immer notwendig und hängt vom Einzelfall ab.

Weiterhin gibt es ein Limit von maximal 15 Partitionen für SCSI- und SATA-Datenträger, es sei denn, der Datenträger nutzt GPT-Labels.

Was ist mit dem Swap-Speicher?

Die perfekte Größe für eine Swap-Partition gibt es nicht. Der Zweck von Swap-Speicher es ist Festplattenspeicherplatz für den Kernel bereitzuhalten, wenn der interne Speicher (RAM) knapp wird. Der Swap-Speicher erlaubt dem Kernel Speicherseiten auf die vermutlich nicht bald zugegriffen wird auf die Platte auszulagern (Swap oder Page-Out) um Arbeitsspeicher freizumachen. Wird der Speicherinhalt plötzlich benötigt, müssen diese Speicherseiten (Pages) wieder zurück in den Arbeitsspeicher geladen werden (Page-In), dies dauert eine Weile (da Festplatten verglichen mit Arbeitsspeicher sehr langsam sind).

Wenn auf dem System keine Speicherintensiven Anwendungen ausgeführt werden oder das System viel Speicher zur Verfügung hat, benötigt es vermutlich nicht viel Swap-Speicher. Allerdings wird der Swap-Speicher ebenfalls dazu verwendet, den gesamten Speicherinhalt im Ruhezustand (Hibernation) aufzunehmen. Wenn das System den Ruhezustand benötigt, brauchen Sie daher einen größeren Swap-Speicher. Häufig muss dieser mindestens so groß sein, wie der im System installierte Arbeitsspeicher.


fdisk verwenden

SGI Maschinen: SGI Plattenlabel erstellen

Alle Festplatten in einem SGI System benötigen ein SGI Plattenlabel, welches eine ähnliche Funktionalität wie ein Sun oder MS-DOS Plattenlabel bietet -- es speichert Informationen über die Partitionen einer Festplatte. Die Erzeugung eines neuen SGI Plattenlabels erzeugt zwei spezielle Partitionen auf der Festplatte:

  • SGI Volume Header (9. Partition): Diese Partition ist wichtig. Sie ist der Ort an dem sich der Bootloader befindet und in einigen Fällen enthält sie ebenfalls die Kernel-Abbilder.
  • SGI Volume (11. Partition): Diese Partition ist ähnlich wichtig wie die dritte Partition des Sun Plattenlabels "Whole Disk". Diese Partition umschließt die gesamte Festplatte und solle unberührt bleiben. Sie dient keinem anderen speziellen Zweck außer das PROM in undokumentierter Weise zu unterstützen (oder es wird irgendwie von IRIX verwendet).
Warnung
Der SGI Volume Header muss bei Zylinder 0 beginnen. Ein Fehler hierbei bedeutet ein Scheitern beim Booten von der Platte.

Das Folgende ist ein Beispiel-Auszug einer fdisk Sitzung. Lesen und passen Sie es Ihren persönlichen Bedürfnissen an ...

root #fdisk /dev/sda

Wechseln Sie in den Expertenmodus:

Command (m for help):x

Mit m wird das vollständige Menü der Optionen angezeigt:

Expert command (m for help):m
Command action
   b   move beginning of data in a partition
   c   change number of cylinders
   d   print the raw data in the partition table
   e   list extended partitions
   f   fix partition order
   g   create an IRIX (SGI) partition table
   h   change number of heads
   m   print this menu
   p   print the partition table
   q   quit without saving changes
   r   return to main menu
   s   change number of sectors/track
   v   verify the partition table
   w   write table to disk and exit

Erzeugen Sie ein SGI Plattenlabel:

Expert command (m for help):g
Building a new SGI disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content will be irrecoverably lost.

Kehren Sie zum Hauptmenü zurück:

Expert command (m for help):r

Werfen wir einen Blick auf das aktuelle Partitions-Layout:

Command (m for help):p
Disk /dev/sda (SGI disk label): 64 heads, 32 sectors, 17482 cylinders
Units = cylinders of 2048 * 512 bytes
  
----- partitions -----
Pt#     Device  Info     Start       End   Sectors  Id  System
 9:  /dev/sda1               0         4     10240   0  SGI volhdr
11:  /dev/sda2               0     17481  35803136   6  SGI volume
----- Bootinfo -----
Bootfile: /unix
----- Directory Entries -----
Notiz
Wenn die Festplatte bereits ein bestehendes SGI Plattenlabel hat, wird fdisk die Erzeugung eines neuen Labels nicht gestatten. Es gibt zwei Möglichkeiten das zu umgehen. Die erste ist die Erstellung eines Sun oder MS-DOS Plattenlabels, die Änderungen auf die Festplatte zu schreiben und fdisk neu zu starten. Die zweite ist die Partitionstabelle mit Nullwerten durch den folgenden Befehl zu überschreiben: dd if=/dev/zero of=/dev/sda bs=512 count=1

SGI Volume-Header Größenänderung

Wichtig
Diesen Schritt benötigt man aufgrund eines Bugs in fdisk oft. Aus irgendeinem Grund wird der Volume-Header nicht korrekt erstellt. Das Ergebnis ist, dass er auf Zylinder 0 startet und endet. Dies verhindert, dass mehreren Partitionen erstellt werden. Um dieses Problem zu umgehen ... lesen Sie weiter.

Da jetzt ein SGI Plattenlabel erstellt wurde, können nun Partitionen definiert werden. Im obigen Beispiel sind bereits zwei Partitionen definiert. Das sind wie erwähnt die besonderen Partitionen und sie sollten normalerweise nicht verändert werden. Wie auch immer, zur Installation von Gentoo müssen wir einen Bootloader und möglicherweise mehrere Kernel-Abbilder (abhängig vom Systemtyp) direkt in den Volume-Header laden. Der Volume-Header selbst kann bis zu acht Abbilder jeglicher Größe beinhalten mit jeweils einem acht Zeichen langen Namen.

Der Vorgang den Volume-Header größer zu machen ist etwas verworren und mit einem kleinen Trick verbunden. Man kann den Volume-Header wegen dem eigenartigen Verhalten von fdisk nicht einfach löschen und ihn dann wieder neu hinzufügen. Im Beispiel unten erzeugen wir einen 50 MB großen Volume-Header in Verbindung mit einer 50 MB großen /boot/ Partition. Das tatsächliche Plattenlayout kann sich unterscheiden, dies dient nur der Veranschaulichung.

Eine neue Partition erstellen:

Command (m for help):n
Partition number (1-16): 1
First cylinder (5-8682, default 5): 51
 Last cylinder (51-8682, default 8682): 101

Beachten Sie, dass fdisk zur Neuerstellung von Partition Nr. 1 als kleinsten Zylinder 5 gestattet. Wenn wir versucht hätten den SGI Volume-Header zu löschen und auf diese Weise wiederherzustellen, würden wir vor dem gleichen Problem stehen. In unserem Beispiel wollen wir dass /boot/ 50 MB groß ist, deshalb starten wir bei Zylinder 51. (- Der Volume-Header muss bei Zylinder 0 beginnen, erinnern Sie sich?) Den End-Zylinder setzten wir bei 101, das in etwa 50 MB entspricht (+/- 1..5 MB).

Die Partition löschen:

Command (m for help):d
Partition number (1-16): 9

Jetzt die Neuerstellung der Volume-Header Partition:

Command (m for help):n
Partition number (1-16): 9
First cylinder (0-50, default 0): 0
 Last cylinder (0-50, default 50): 50

Wenn Sie sich unsicher über die Verwendung fdisk sind, werfen sie weiter unten einen Blick auf die Anleitung zur Partitionierung auf Cobalt Systemen. Das Konzept ist genau das gleiche -- denken Sie nur daran die Volume-Header und die "Whole Disk" Partition in Ruhe zu lassen.

Sobald dies geschehen ist können Sie die übrigen Partitionen die Sie benötigen erzeugen. Nachdem Sie alle Partitionen angelegt haben, stellen Sie sicher die Partitions-ID der Swap Partition auf 82 zu stellen, "Linux Swap". Der Standard ist 83, "Linux Native".

Cobalt Festplatten partitionieren

Auf Cobalt Maschinen erwartet das BOOTROM einen MS-DOS MBR, deshalb ist die Festplattenpartitionierung relativ geradlinig. -- In der Tat wird dies wie bei einer Intel x86 Maschine gemacht. Es gibt jedoch ein paar Dinge die Sie beachten sollten.

  • Die Cobalt Firmware erwartet /dev/sda1 als Linux Partition im Format EXT2 Revision 0. EXT Revision 1 Partitionen funktionieren NICHT! (Das Cobalt BOOTROM versteht nur EXT2r0.)
  • Die oben angesprochene Partition muss das gzip-komprimierte ELF Abbild vmlinux.gz in der Wurzel ("root") dieser Partition enthalten, das als Kernel geladen wird.

Aus diesem Grund wird eine ca. 20 MB große mit EXT2r0 formatierte /boot/ Partition empfohlen auf der CoLo und die Kernel installiert werden. Dies gestattet dem Benutzer ein modernes Dateisystem (EXT3 oder ReiserFS) auf der Root Partition zu betreiben.

Im Beispiel wird davon ausgegangen, dass /dev/sda1 erzeugt wird, um später als /boot/ Partition eingehängt zu werden. Falls Sie die Partition zu / machen wollen, denken Sie an die Erwartungen des PROMs.

Also weiter ... Um die Partition zu erstellen geben Sie an der Eingabeaufforderung fdisk /dev/sda ein. Die wichtigsten Befehle, die Sie wissen sollten sind diese:

CodeWichtige fdisk Befehle

'"`UNIQ--pre-00000019-QINU`"'

This is a deprecated template and will be removed soon!!! Help us update this template!

root #fdisk /dev/sda
The number of cylinders for this disk is set to 19870.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs
   (e.g., DOS FDISK, OS/2 FDISK)

Fangen Sie damit an, alle vorhandenen Partitionen zu löschen:

Command (m for help):o
Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content won't be recoverable.
  
  
The number of cylinders for this disk is set to 19870.
There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs
   (e.g., DOS FDISK, OS/2 FDISK)
Warning: invalid flag 0x0000 of partition table 4 will be corrected by w(rite)

Überprüfen Sie nun durch Drücken der Befehlstaste p, dass die Partitionstabelle leer ist:

Command (m for help):p
Disk /dev/sda: 10.2 GB, 10254827520 bytes
16 heads, 63 sectors/track, 19870 cylinders
Units = cylinders of 1008 * 512 = 516096 bytes
  
   Device Boot      Start         End      Blocks   Id  System

Erstellen Sie die /boot Partition:

Command (m for help):n
Command action
   e   extended
   p   primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-19870, default 1):
Last cylinder or +size or +sizeM or +sizeK (1-19870, default 19870): +20M

Wenn Sie die Partitionen ausgeben lassen, beachten Sie die neu erstellte:

Command (m for help):p
Disk /dev/sda: 10.2 GB, 10254827520 bytes
16 heads, 63 sectors/track, 19870 cylinders
Units = cylinders of 1008 * 512 = 516096 bytes
  
   Device Boot      Start         End      Blocks   Id  System
/dev/sda1               1          40       20128+  83  Linux

Lassen Sie uns nun eine erweiterte Partition erstellen, die den Rest der Festplatte umfasst. In dieser erweiterten Partition legen wir die übrigen Partitionen (logische Partitionen) an:

Command (m for help):n
Command action
   e   extended
   p   primary partition (1-4)
e
Partition number (1-4): 2
First cylinder (41-19870, default 41):
Using default value 41
Last cylinder or +size or +sizeM or +sizeK (41-19870, default 19870):
Using default value 19870

Jetzt erstellen wir die Partitionen /, /usr, /var usw.

Command (m for help):n
Command action
   l   logical (5 or over)
   p   primary partition (1-4)
l
First cylinder (41-19870, default 41):<Press ENTER>
Using default value 41
Last cylinder or +size or +sizeM or +sizeK (41-19870, default 19870): +500M

Wiederholen Sie dies wie benötigt.

Zum Schluss zur Swap Partition. Es wird empfohlen mindestens 250 MB, besser 1 GB Speicherplatz zu verwenden:

Command (m for help):n
Command action
   l   logical (5 or over)
   p   primary partition (1-4)
l
First cylinder (17294-19870, default 17294): <Press ENTER>
Using default value 17294
Last cylinder or +size or +sizeM or +sizeK (1011-19870, default 19870): <Press ENTER>
Using default value 19870

Wenn Sie die Partitionstabelle überprüfen, sollte alles bereit sein - bis auf eine Sache.

Command (m for help):p
Disk /dev/sda: 10.2 GB, 10254827520 bytes
16 heads, 63 sectors/track, 19870 cylinders
Units = cylinders of 1008 * 512 = 516096 bytes
  
Device Boot      Start         End      Blocks      ID  System
/dev/sda1               1          21       10552+  83  Linux
/dev/sda2              22       19870    10003896    5  Extended
/dev/sda5              22        1037      512032+  83  Linux
/dev/sda6            1038        5101     2048224+  83  Linux
/dev/sda7            5102        9165     2048224+  83  Linux
/dev/sda8            9166       13229     2048224+  83  Linux
/dev/sda9           13230       17293     2048224+  83  Linux
/dev/sda10          17294       19870     1298776+  83  Linux

Ist Ihnen aufgefallen, dass Partition 10 - die Swap Partition - immer noch vom Typ 83 ist? Lassen Sie uns das auf den richtigen Typ ändern:

Command (m for help):t
Partition number (1-10): 10
Hex code (type L to list codes): 82
Changed system type of partition 10 to 82 (Linux swap)

Nun zur Überprüfung:

Command (m for help):p
Disk /dev/sda: 10.2 GB, 10254827520 bytes
16 heads, 63 sectors/track, 19870 cylinders
Units = cylinders of 1008 * 512 = 516096 bytes
  
Device Boot      Start         End      Blocks      ID  System
/dev/sda1               1          21       10552+  83  Linux
/dev/sda2              22       19870    10003896    5  Extended
/dev/sda5              22        1037      512032+  83  Linux
/dev/sda6            1038        5101     2048224+  83  Linux
/dev/sda7            5102        9165     2048224+  83  Linux
/dev/sda8            9166       13229     2048224+  83  Linux
/dev/sda9           13230       17293     2048224+  83  Linux
/dev/sda10          17294       19870     1298776+  82  Linux Swap

Wir speichern die neue Partitionstabelle:

Command (m for help):w
The partition table has been altered!
  
Calling ioctl() to re-read partition table.
Syncing disks.


Erstellen von Dateisystemen

Einleitung

Nachdem die Partitionen angelegt wurden, ist es an der Zeit, Dateisysteme darauf anzulegen. Im nächsten Abschnitt werden die unterschiedlichen Dateisysteme beschrieben, die Linux unterstützt. Leser, die bereits wissen, welches Dateisystem sie verwenden wollen, können bei Dateisystem auf einer Partition anlegen fortfahren. Alle anderen sollten weiterlesen, um mehr über die verfügbaren Dateisysteme zu erfahren ...

Dateisysteme

Mehrere Dateisysteme sind verfügbar. Einige davon gelten als stabil auf der mips Architektur. Es ist ratsam, sich über das Dateisystem und dessen Unterstützungsgrad zu informieren, bevor Sie sich für wichtige Partitionen für ein eher experimentelles Dateisystem entscheiden.

btrfs
A next generation filesystem that provides many advanced features such as snapshotting, self-healing through checksums, transparent compression, subvolumes and integrated RAID. A few distributions have begun to ship it as an out-of-the-box option, but it is not production ready. Reports of filesystem corruption are common. Its developers urge people to run the latest kernel version for safety because the older ones have known problems. This has been the case for years and it is too early to tell if things have changed. Fixes for corruption issues are rarely backported to older kernels. Proceed with caution when using this filesystem!
ext2
Das ist das erprobte und wahre Linux Dateisystem aber es hat kein Metadaten-Journaling. Dies bedeutet, dass normale ext2 Dateisystemüberprüfungen beim Systemstart ziemlich zeitaufwändig sein können. Mittlerweile gibt es eine gute Auswahl an Journaling-Dateisystemen, die sehr schnell auf Konsistenz überprüft werden können und deshalb ihren Nicht-Journaling-Ausführungen im Allgemeinen bevorzugt werden. Journaling-Dateisysteme verhindern lange Verzögerungen wenn das System gebootet ist und es passiert, dass das Dateisystem in einem inkonsistenten Zustand ist.
ext3
Die Journaling-Version des Dateisystems ext2. Es bietet Metadaten-Journaling für schnelle Wiederherstellung zusätzlich zu anderen Journaling-Modi wie Full-Data- und Ordered-Data-Journaling. Es verwendet einen H-Baum (Htree) Index der hohe Leistung in fast allen Situationen ermöglicht. Kurz gesagt, ext3 ist ein sehr gutes und verlässliches Dateisystem.
ext4
Ursprünglich als Abspaltung von ext3 entstanden, bringt ext4 neue Funktionen, Leistungsverbesserungen und den Wegfall der Größenbeschränkungen durch moderate Änderungen des On-Disk-Formats. Es kann Datenträger mit bis zu 1 EB und mit Dateigrößen von bis zu 16 TB umspannen. Anstelle der klassischen ext2/3 Bitmap-Block-Allokation nutzt ext4 Extents, die die Performance bei großen Dateien verbessern und Fragmentierung reduzieren. ext4 bietet zusätzlich ausgereiftere Block-Allokation-Algorithmen (Zeitverzögerte Allokation und Mehrfache Preallokation), die dem Dateisystemtreiber mehrere Möglichen bieten das Layout der Daten auf der Festplatte zu optimieren. Es ist das empfohlene Allzweck-Dateisystem für jede Plattform.
f2fs
The Flash-Friendly File System was originally created by Samsung for the use with NAND flash memory. As of Q2, 2016, this filesystem is still considered immature, but it is a decent choice when installing Gentoo to microSD cards, USB drives, or other flash-based storage devices.
JFS
Das Hochleistungs-Journaling-Dateisystem von IBM. JFS ist ein schlankes, schnelles und verlässliches B+-Baum basiertes Dateisystem mit guter Performance unter verschiedensten Gegebenheiten.
ReiserFS
Ein B+-Baum basiertes Journaling-Dateisystem mit einer guten Allgemeinleistung, besonders im Umgang mit winzigen Dateien für den Preis von mehreren CPU-Zyklen. ReiserFS scheint weniger gewartet zu werden als andere Dateisysteme.
XFS
Ein Dateisystem mit Metadaten-Journaling, das mit einer Reihe robuster Fähigkeiten daherkommt und für Skalierbarkeit optimiert ist. XFS scheint gegenüber unterschiedlichen Hardwareproblemen weniger Fehlertolerant zu sein.
vfat
Ebenfalls als FAT32 bekannt, wird es von Linux unterstützt, aber unterstützt selbst keine Berechtigungseinstellungen. Es wird vor allem aus Kompatibilitätsgründen zu anderen Betriebssystemen (hauptsächlich Microsoft Windows) verwendet. vfat ist zudem eine Notwendigkeit für manche Systemfirmware (wie UEFI).
NTFS
This "New Technology" filesystem is the flagship filesystem of Microsoft Windows. Similar to vfat above it does not store permission settings or extended attributes necessary for BSD or Linux to function properly, therefore it cannot be used as a root filesystem. It should only be used for interoperability with Microsoft Windows systems (note the emphasis on only).

Bei der Verwendung von ext2, ext3 oder ext4 auf kleinen Partitionen (kleiner als 8 GB), sollte das Dateisystem mit den passenden Optionen erstellt werden, um genügend Inodes zu reservieren. Die Anwendung mke2fs (mkfs.ext2) verwendet die "bytes-per-inode"-Einstellung um zu berechnen wie viele Inodes eine Dateisystem haben sollte. Auf kleineren Partitionen ist es ratsam die berechnete Anzahl der Inodes zu erhöhen.

Bei ext2, ext3 und ext4 kann dies mit einem der folgenden Befehle erfolgen:

root #mkfs.ext2 -T small /dev/<device>
root #mkfs.ext3 -T small /dev/<device>
root #mkfs.ext4 -T small /dev/<device>

Dies vervierfacht die Zahl der Inodes für ein angegebenes Dateisystem in der Regel, da es dessen "bytes-per-inode" (Bytes pro Inode) von 16 kB auf 4 kB pro Inode reduziert. Durch die Angabe des Verhältnisses kann dies sogar weiter optimiert werden:

root #mkfs.ext2 -i <ratio> /dev/<device>

Dateisystem auf einer Partition anlegen

Dateisysteme können mit Hilfe von Programmen auf einer Partition oder auf einem Datenträger angelegt werden. Die folgende Tabelle zeigt, welchen Befehl Sie für welches Dateisystem benötigen. Um weitere Informationen zu einem Dateisystem zu erhalten, können Sie auf den Namen des Dateisystems klicken.

Dateisystem Befehl zum Anlegen Teil der Minimal CD? Gentoo Paket
btrfs mkfs.btrfs Yes sys-fs/btrfs-progs
ext2 mkfs.ext2 Yes sys-fs/e2fsprogs
ext3 mkfs.ext3 Yes sys-fs/e2fsprogs
ext4 mkfs.ext4 Yes sys-fs/e2fsprogs
f2fs mkfs.f2fs Yes sys-fs/f2fs-tools
jfs mkfs.jfs Yes sys-fs/jfsutils
reiserfs mkfs.reiserfs Yes sys-fs/reiserfsprogs
xfs mkfs.xfs Yes sys-fs/xfsprogs
vfat mkfs.vfat Yes sys-fs/dosfstools
NTFS mkfs.ntfs Yes sys-fs/ntfs3g

Um beispielsweise die Boot-Partition (/dev/sda1) mit ext2 und die root-Partition (/dev/sda5) mit ext4 zu formatieren (wie in der Beispiel-Partitionsstruktur), würde man folgende Befehle verwenden:

root #mkfs.ext2 /dev/sda1
root #mkfs.ext4 /dev/sda5

Erzeugen Sie nun die Dateisysteme auf den zuvor erzeugten Partitionen (oder logischen Laufwerken).

Aktivieren der Swap-Partition

mkswap ist der Befehl der verwendet wird um Swap-Partitionen zu initialisieren:

root #mkswap /dev/sda10

Zur Aktivierung der Swap-Partition verwenden Sie swapon:

root #swapon /dev/sda10

Erzeugen und aktivieren Sie jetzt die Swap-Partition mit den oben genannten Befehlen.

Einhängen der Root-Partition

Nun, da die Partitionen initialisiert sind und ein Dateisystem beinhalten, ist es an der Zeit, diese einzuhängen. Verwenden Sie den Befehl mount, aber vergessen Sie nicht die notwendigen Einhänge-Verzeichnisse für jede Partition zu erzeugen. Als Beispiel hängen wir die Root-Partition ein:

root #mount /dev/sda5 /mnt/gentoo
Notiz
Wenn sich /tmp/ auf einer separaten Partition befinden muss, ändern Sie die Berechtigungen nach dem Einhängen:
root #chmod 1777 /mnt/gentoo/tmp
Dies gilt ebenfalls für /var/tmp.

In der Anleitung wird später das Dateisystem proc (eine virtuelle Schnittstelle zum Kernel) zusammen mit anderen Kernel Pseudo-Dateisystemen eingehängt. Zunächst installieren wir jedoch die Gentoo Installationsdateien.




Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎polski • ‎русский • ‎українська • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
MIPS Handbuch
Installation
Über die Installation
Auswahl des Mediums
Konfiguration des Netzwerks
Vorbereiten der Festplatte(n)
Installation des Stage Archivs
Installation des Basissystems
Konfiguration des Kernels
Konfiguration des Systems
Installation der Tools
Konfiguration des Bootloaders
Abschluss
Arbeiten mit Gentoo
Portage-Einführung
USE-Flags
Portage-Features
Initskript-System
Umgebungsvariablen
Arbeiten mit Portage
Dateien und Verzeichnisse
Variablen
Mischen von Softwarezweigen
Zusätzliche Tools
Eigener Portage-Tree
Erweiterte Portage-Features
Netzwerk-Konfiguration
Zu Beginn
Fortgeschrittene Konfiguration
Modulare Vernetzung
Drahtlose Netzwerke
Funktionalität hinzufügen
Dynamisches Management


Installation eines Stage Tar-Archivs

Datum und Uhrzeit einstellen

Bevor Sie mit der Installation von Gentoo beginnen, sollten Sie auf Ihrem System das korrekte Datum und die korrekte Uhrzeit einstellen. Eine fehlerhaft eingestellte System-Uhr kann zu merkwürdigen Ergebnissen und Fehlern führen. Beispielsweise könnte es sein, dass die Gentoo Installationsdateien bei einer falsch eingestellten System-Uhr gar nicht erst heruntergeladen werden können, weil manche Websites und Dienste Verschlüsselung (SSL/TLS) verwenden und diese nicht funktioniert, wenn die System-Uhr zu stark verstellt ist.

Überprüfen Sie das System-Datum und die System-Uhrzeit mit dem Kommando date:

root #date
Mo 3. Okt 13:16:22 CET 2016

Wenn Datum und/oder Uhrzeit nicht stimmen, aktualisieren Sie die System-Zeit bitte mit einer der folgenden Methoden.

Notiz
Systeme, die keine eingebaute Hardware-Uhr (Real-Time Clock, RTC) haben, sollten so konfiguriert werden, dass Sie ihre Uhrzeit automatisch mit einem Zeit-Server synchronisieren. Das gleiche gilt für Systeme, die zwar eine Hardware-Uhr haben, bei denen aber die Batterie der Hardware-Uhr nicht mehr funktioniert.

Automatisch

Die offiziellen Gentoo Installations-Medien enthalten das Programm ntpd. Es ist im Paket net-misc/ntp enthalten. ntpd kann verwendet werden, um die Systemzeit automatisch mit einem Zeitserver zu synchronisieren. Die offiziellen Gentoo Installations-Medien enthalten weiterhin eine ntpd Konfigurationsdatei, die ntp.org als Zeit-Server konfiguriert. Damit Sie ntpd nutzen können, benötigen Sie eine funktionierende Netzanbindung mit Zugang zum Internet (siehe Konfiguration des Netzwerks). Bitte beachten Sie, dass ntpd möglicherweise nicht auf allen Architekturen verfügbar ist.

Warnung
Eine automatische Zeit-Synchronisierung hat einen Preis. Der Zeit-Server (beispielsweise ntp.org) erhält Informationen über Ihr System, Ihre IP-Adresse und über einen Teil Ihrer Netzwerk-Struktur. Anwender, die sich um ihre Privatsphäre sorgen, sollten dies bedenken, bevor Sie ihre Systemuhr mit einem Zeit-Server synchronisieren
root #ntpd -q -g

Manuell

Die date Anweisung kann auch benutzt werden, um ihre Systemuhr manuell zu setzen. Verwenden Sie die MMDDhhmmYYYY Syntax (Month, Day, hour, minute and Year).

Für Linux Systeme wird UTC Zeit empfohlen. Später im Installationsprozess werden wir eine Zeitzone definieren. Diese wird dafür sorgen, dass Uhrzeiten in der lokalen Zeitzone angezeigt werden.

Um beispielsweise die Zeit auf den 3. Oktober 2016, 13:16 Uhr einzustellen, geben Sie folgendes ein:

root #date 100313162016

Auswahl eines Stage Tar-Archivs

Multilib (32 and 64-bit)

Die Wahl des richtigen Stage Tar-Archivs kann später im Installationsprozess erhebliche Mengen an Zeit einsparen, ganz besonders wenn der Zeitpunkt gekommen ist, für die Auswahl des System-Profils. Ein "multilib" Stage Tar-Archiv ermöglicht ein System mit 64- und 32-Bit Bibliotheken, wobei nach Möglichkeit die 64-Bit Bibliotheken verwendet werden. Falls dies nicht möglich sein sollte, können die 32-Bit Bibliotheken verwendet werden. Für die meisten Installationen ist dies eine hervorragende Wahl, weil sie große Flexibilität und Anpassungsmöglichkeiten für die Zukunft ermöglicht. Auch wer in der Lage sein möchte, einfach zwischen verschiedenen Profilen zu wechseln, sollte ein "multilib" Stage Tar-Archiv wählen.

Die meisten Anwender sollten die "advanced" Tar-Archiv Optionen NICHT verwenden. Sie sind für spezielle Software- oder Hardware-Konfigurationen gedacht.

No-multilib (nur 64-bit)

Die Wahl eines "no-multilib" Stage Tar-Archivs ermöglicht die Installation einer reinen 64-Bit Linux-Umgebung. Bitte beachten Sie, dass einige Anwendungen wie Wine, die eine 32-Bit Umgebung benötigen, dann nicht laufen werden. Ein späterer Wechsel auf eine "multilib" Umgebung ist theoretisch möglich, aber sehr schwierig - und nur für Experten durchführbar. Für gewöhnliche Anwender ist ein Wechsel auf eine "multilib" Umgebung nur durch eine Neu-Installation möglich. Deshalb sollten Gentoo-Neueinsteiger ein "multilib" Stage Tar-Archiv wählen. Ein "no-multilib" Stage Tar-Archiv sollten sie nur dann verwenden, wenn es unbedingt notwendig ist.

Warnung
Die Migration von einem "no-multilib" zu einem "multilib" System ist sehr schwierig und erfordert sehr gute Kenntnisse von Gentoo und der Low-Level Toolchain. Sogar für die Gentoo Toolchain Entwickler ist ein solcher Wechsel nicht ganz einfach. Anders ausgedrückt: gewöhnliche Anwender, die sich für "no-multilib" entscheiden, können nur durch eine Neu-Installation auf "multilib" wechseln.

Stage Tar-Archiv herunterladen

Wechseln Sie in das Verzeichnis, in dem das Root-Dateisystem eingehängt ist (wahrscheinlich /mnt/gentoo):

root #cd /mnt/gentoo

Zum Herunterladen des Stage Tar-Archivs benötigen Sie einen Web-Browser.

Browser mit grafischer Benutzeroberfläche

Wenn Sie einen Web-Browser mit grafischer Benutzeroberfläche verwenden: gehen Sie auf die Download Seite und kopieren Sie die URL des gewünschten Stage Tar-Archivs in die Zwischenablage (bei Firefox oder Chromium durch Drücken der rechten Maus-Taste und dann "Copy link address" bzw. "Copy link location"). Gehen Sie dann in Ihr Terminal-Fenster, tippen Sie wget und kopieren Sie die URL aus der Zwischenablage. Drücken Sie Return, um den Download zu starten.

root #wget <PASTED_STAGE_URL>

Textbasierte Browser

Wenn Sie lieber in einem Terminal-Fenster arbeiten, können Sie links verwenden, einen textbasierten, menügeführten Browser. Starten Sie links und navigieren Sie zu der Gentoo Mirror-Seite:

root #links https://www.gentoo.org/downloads/mirrors/

Um einen HTTP-Proxy mit links zu verwenden, übergeben Sie die URL mit der -http-proxy Option:

root #links -http-proxy proxy.server.com:8080 https://www.gentoo.org/downloads/mirrors/

Neben links gibt es auch den Browser lynx. Wie links ist es ein nicht-grafischer Browser, aber er ist nicht menügesteuert.

root #lynx https://www.gentoo.org/downloads/mirrors/

Wenn ein Proxy definiert werden muss, exportieren Sie die http_proxy und/ oder ftp_proxy Variablen:

root #export http_proxy="http://proxy.server.com:port"
root #export ftp_proxy="http://proxy.server.com:port"

Bitte wählen Sie in der Spiegel-Liste einen Spiegel in Ihrer Nähe. Für gewöhnlich genügen HTTP Spiegel, andere Protokolle stehen aber auch zur Verfügung. Gehen Sie in das Verzeichnis releases/mips/autobuilds/. Dort werden alle verfügbaren Stage Tar-Archive angezeigt (sie können in Unterverzeichnissen gespeichert sein, benannt nach den einzelnen Sub-Architekturen). Wählen Sie eines aus und drücken Sie d zum Download.

Nachdem Sie das Stage Tar-Archiv erfolgreich heruntergeladen haben, können Sie die Integrität des Tar-Archivs verifizieren und den Inhalt validieren. Wie das geht, steht im folgenden Abschnitt.

Wenn Sie kein Interesse an einer Überprüfung und Validierung des Stage Tar-Archivs haben, können Sie jetzt q drücken, um den Browser zu beenden. Springen Sie danach zu dem Abschnitt Stage Tar-Archiv entpacken.

Überprüfung und Validierung

Notiz
Früher wurden Stage Tar-Archive mit "bzip2" komprimiert. Heute wird zum Komprimieren häufig "xz" verwendet. Je nach genutztem Komprimierungsverfahren hat das von Ihnen heruntergeladene Tar-Archiv entweder die Dateinamen-Endung .tar.bz2 oder .tar.xz. Bitte beachten Sie, dass Sie in den folgenden Befehlen die Dateinamen-Endung des Tar-Archivs so anpassen müssen, dass sie zu dem von Ihnen heruntergeladenen Tar-Archiv passt - also entweder .tar.bz2 oder .tar.xz.

Wie bei der minimalen Installations-CDs stehen zusätzliche Downloads zur Verfügung, mit denen das Stage Tar-Archiv überprüft und validiert werden kann. Obwohl dieser Schritt übersprungen werden kann, können diese Downloads von Anwendern genutzt werden, die die Integrität des Stage Tar-Archivs sicherstellen wollen.

  • Eine Datei .CONTENTS, die eine Liste aller Dateien im Stage Tar-Archiv enthält.
  • Eine Datei .DIGESTS, die Prüfsummen des Stage Tar-Archivs von verschiedenen Algorithmen beinhaltet.
  • Eine Datei .DIGESTS.asc, die wie die Datei .DIGESTS Prüfsummen des Stage Tar-Archivs von verschiedenen Algorithmen beinhaltet, allerdings zusätzlich kryptographisch signiert um sicherzustellen, dass es durch das Gentoo-Projekt zur Verfügung gestellt wurde.

Verwenden Sie openssl zum Berechnen einer Prüfsumme des Stage tar-Archivs und vergleichen Sie die Ausgabe mit den Prüfsummen, die in den Dateien .DIGESTS und .DIGESTS.asc stehen.

Zur Überprüfung der SHA512 Prüfsumme zum Beispiel:

root #openssl dgst -r -sha512 stage3-mips-<release>.tar.?(bz2|xz)

Eine weitere Möglichkeit ist die Verwendung des Befehls sha512sum:

root #sha512sum stage3-mips-<release>.tar.?(bz2|xz)

Zur Validierung der Whirlpool Prüfsumme:

root #openssl dgst -r -whirlpool stage3-mips-<release>.tar.?(bz2|xz)

Vergleichen Sie die Ausgabe dieser Befehle mit dem Wert der in den .DIGESTS(.asc) Dateien eingetragen ist. Die Werte müssen übereinstimmen, andernfalls ist möglicherweise die heruntergeladene Datei beschädigt (oder die DIGEST-Datei ist es).

Genau wie bei der ISO-Datei ist es ebenfalls möglich, die kryptographische Signatur der Datei .DIGESTS.asc mit gpg zu überprüfen, um sicherzustellen, dass die Prüfsummen nicht manipuliert wurden:

root #gpg --verify stage3-mips-<release>.tar.?(bz2|xz){.DIGESTS.asc,}

Stage Tar-Archiv entpacken

Entpacken Sie das heruntergeladene Stage Tar-Archiv auf dem System. Wir verwenden tar um fortzufahren:

root #tar xpvf stage3-*.tar.bz2 --xattrs-include='*.*' --numeric-owner

Wichtig ist, dass Sie genau die oben angegebenen Optionen (xvpf, --xattrs-include='*.*' und --numeric-owner) verwenden. Das x steht für extrahieren, das p (preserve) für den Erhalt der Dateirechte und das f (file) gibt an, dass wir das auszupackende Archiv aus einer Datei lesen wollen - und nicht von der Standardeingabe. --xattrs-include='*.*' bedeutet, dass die erweiterten (extended) Attribute erhalten bleiben sollen. --numeric-owner ist erforderlich um sicherzustellen, dass die User- und Gruppen IDs der extrahierten Dateien so gesetzt werden, wie vom Gentoo Release Team definiert - und zwar auch dann, wenn abenteuerlustigere Anwender bei der Installation nicht die offiziellen Installations-Medien verwenden.

Nachdem nun das Stage Tar-Archiv ausgepackt ist, geht es weiter mit dem Schritt: Compiler-Optionen konfigurieren.

Compiler-Optionen konfigurieren

Einleitung

Um Gentoo zu optimieren, können Variablen gesetzt werden, mit denen das Verhalten von Portage (Gentoos offiziellem Paket-Manager) beeinflusst wird. Diese Variablen können als Umgebungs-Variablen gesetzt werden (mit export), aber diese wären nicht permanent. Um die Variablen permanent zu setzen, können sie in /etc/portage/make.conf definiert werden. make.conf ist eine Portage Konfigurationsdatei, die von den Portage Tools beim Start eingelesen wird.

Notiz
Eine kommentierte Liste aller möglichen Variablen finden Sie in /mnt/gentoo/usr/share/portage/config/make.conf.example. Für eine erfolgreiche Installation und ein lauffähiges System benötigen Sie aber nur die Variablen, die im folgenden Abschnitt besprochen werden.

Starten Sie einen Editor, damit Sie die Werte der Optimierungs-Variablen, die wir im Folgenden besprechen werden, ändern können. In dieser Anleitung verwenden wir den Editor nano.

root #nano -w /mnt/gentoo/etc/portage/make.conf

Anhand der Datei make.conf.example sollte die Syntax von make.conf erkennbar sein: Kommentar-Zeilen starten mit einem "#", andere Zeilen nutzen die VARIABLE="Wert" Syntax. Im Folgenden werden wir einige dieser Variablen besprechen.

CFLAGS und CXXFLAGS

In den Variablen CFLAGS und CXXFLAGS können Optimierungs-Optionen für den GCC C-Compiler und den GCC C++ Compiler definiert werden. Die in make.conf global definierten Optimierungs-Optionen gelten dann für die Installation aller Pakete. Um die maximal mögliche Performance jedes einzelnen Pakets zu erreichen, bräuchte man jedoch für jedes Programm andere Optionen - weil jedes Programm anders ist und anders optimiert werden muss. Dies ist jedoch nicht praktikabel - und deshalb werden die Optimierungs-Optionen global für alle Pakete in make.conf definiert.

In make.conf sollten Optimierungen definiert werden, mit denen ihr System schnell und stabil läuft. Definieren Sie hier keine experimentellen Werte. Zu viel Optimierung kann dazu führen, dass Programme nicht mehr gut laufen: sie stürzen ab, funktionieren nicht richtig, oder - noch schlimmer - berechnen falsche Ergebnisse.

In diesem Abschnitt werden wir nur die wichtigsten Optimierungs-Optionen erklären. Eine Übersicht über alle möglichen Optimierungs-Optionen finden Sie auf der GCC online documentation, auf der GCC man page (man gcc) und auf der GCC info Seite (info gcc). man und info sind jedoch nur auf einem fertig installierten Linux System verfügbar. Weiterhin enthält die Datei make.conf.example viele Beispiele und Informationen - bitte vergessen Sie nicht, sie zu lesen.

Eine wichtige Einstellung ist die -march= or -mtune= Option, mit der der Name der Ziel-Architektur definiert wird. Mögliche Werte werden in der Datei make.conf.example beschrieben (als Kommentare). Ein häufig benutzter Wert ist native. Mit diesem Wert wählt der Compiler die Ziel-Architektur des Systems, auf dem er gerade läuft (also des Systems, das Sie gerade installieren).

Eine weitere wichtige Option ist -O (ein großer Buchstabe O, keine Null), mit der die GCC Optimierungs-Klasse definiert wird. Mögliche Werte sind s (size, optimiert auf kleine Code-Größe), 0 (Null - keine Optimierungen), 1, 2 oder sogar 3 für Geschwindigkeits-Optimierung (wobei jede Klasse die Optimierungen der vorhergehenden Klasse und einige zusätzliche Optimierungen durchführt). -O2 ist der empfohlene Standard-Wert. Von -O3 ist bekannt, dass es Probleme geben wird, wenn es systemweit benutzt wird. Wir empfehlen deshalb, bei -O2 zu bleiben.

Eine weitere häufig genutzte Option ist -pipe (verwende für die Kommunikation zwischen den verschiedenen Compiler-Stufen Pipes statt temporärer Dateien). Diese Option hat keine Auswirkungen auf den generierten Code, benötigt aber mehr Arbeitsspeicher. Auf Systemen mit wenig Arbeitsspeicher kann dies dazu führen, dass GCC vorzeitig abgeschossen wird. Wenn das passieren sollte, verwenden Sie diese Option nicht.

Die Verwendung von -fomit-frame-pointer (die dazu führt, dass der Frame Pointer in Funktionen, die keinen Frame Pointer benötigen, nicht gesetzt wird) kann erhebliche Auswirkungen auf das Debugging von Programmen haben.

Wenn Sie die CFLAGS oder die CXXFLAGS Variable definieren, sollten Sie die verschiedenen Optimierungs-Optionen in einem Wert kombinieren. Die Standard-Werte in dem von Ihnen ausgepackten Stage Tar-Archiv sollten ausreichend sein. In der folgenden Box zeigen wir ein Beispiel:

CODE Beispiel für CFLAGS und CXXFLAGS Variablen
# Compiler flags to set for all languages
COMMON_FLAGS="-mabi=32 -mips4 -pipe -O2"
# Use the same settings for both variables
CFLAGS="${COMMON_FLAGS}"
CXXFLAGS="${COMMON_FLAGS}"
Tip
Ausgangspunkt für das Setzen der CFLAGS und alle weiteren Optimierungen sollte der Artikel Safe CFLAGS sein. Die dort gezeigten Einstellungen sind für die meisten Gentoo Anwender ausreichend. Wer sein System weiter optimieren möchte, findet in dem Artikel GCC optimization weitere Tipps und Informationen. Bitte bedenken Sie, dass manche der dort gezeigten Optimierungen Ihr System auch langsamer machen können oder zu merkwürdigen Fehlern bei der Installation führen können. Sofern Sie sich (noch) nicht gut mit Gentoo und der Toolchain auskennen: bleiben Sie lieber bei den "Safe CFLAGS" Einstellungen.

MAKEOPTS

Über die MAKEOPTS Variable kann man u.a. definieren, wie viele parallele Compiler-Jobs gestartet werden sollen, wenn ein Paket installiert wird. Eine gute Wahl ist die Nummer der CPU Kerne plus eins. Diese "Daumenregel" ist gut für den Anfang, aber sie ist nicht immer optimal. Später, wenn Ihr System gut läuft, können Sie mit diesem Wert experimentieren und evtl. einen besseren Wert für Ihr System finden.

CODE Ein Beispiel für eine MAKEOPTS Deklaration in make.conf
MAKEOPTS="-j2"

Los geht's!

Passen Sie die Einstellungen in /mnt/gentoo/etc/portage/make.conf an Ihre persönlichen Wünsche an und speichern Sie die Datei. Anwender, die den Editor "nano" verwenden, können die Änderungen mit Ctrl+X speichern und beenden damit auch den Editor.

Weiter geht es mit dem Kapitel: Installation des Gentoo Basissystems.




Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎polski • ‎русский • ‎українська • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
MIPS Handbuch
Installation
Über die Installation
Auswahl des Mediums
Konfiguration des Netzwerks
Vorbereiten der Festplatte(n)
Installation des Stage Archivs
Installation des Basissystems
Konfiguration des Kernels
Konfiguration des Systems
Installation der Tools
Konfiguration des Bootloaders
Abschluss
Arbeiten mit Gentoo
Portage-Einführung
USE-Flags
Portage-Features
Initskript-System
Umgebungsvariablen
Arbeiten mit Portage
Dateien und Verzeichnisse
Variablen
Mischen von Softwarezweigen
Zusätzliche Tools
Eigener Portage-Tree
Erweiterte Portage-Features
Netzwerk-Konfiguration
Zu Beginn
Fortgeschrittene Konfiguration
Modulare Vernetzung
Drahtlose Netzwerke
Funktionalität hinzufügen
Dynamisches Management


Chrooten

Optional: Spiegelserver wählen

Distributionsdateien

Um den Quellcode zügig herunterzuladen, wird empfohlen, einen schnellen Spiegel auszuwählen. Portage schaut in der Datei make.conf nach der Variable GENTOO_MIRRORS und verwendet darin aufgelistete Spiegel. Es ist möglich, zur Gentoo Mirror-Liste zu surfen und nach einem Spiegel (oder mehreren Spiegeln) zu suchen, die nahe dem Systemstandort liegen (da diese meistens die schnellsten sind). Allerdings bieten wir ein nettes Tool namens mirrorselect, das den Benutzern ein schönes Interface zur Auswahl der benötigten Spiegel bietet. Gehen Sie einfach zu den Spiegeln der Wahl und drücken Sie die Leertaste um einen oder mehrere Spiegel auszuwählen.

root #mirrorselect -i -o >> /mnt/gentoo/etc/portage/make.conf

Gentoo ebuild Repository

Eine zweiter wichtiger Schritt bei der Auswahl der Spiegel ist die Konfiguration des Gentoo ebuild Repository über die Datei /etc/portage/repos.conf/gentoo.conf. Diese Datei beinhaltet die Informationen, die zum Synchronisieren des Paket Repository erforderlich sind. Das Paket Repository ist die Sammlung der ebuilds und der zugehörigen Dateien, die all die Informationen enthalten, die Portage zum Download und zur Installation von Software-Paketen benötigt.

Das Repository kann in ein paar einfachen Schritten konfiguriert werden. Erzeugen Sie zuerst das Verzeichnis repos.conf, falls es noch nicht existiert:

root #mkdir --parents /mnt/gentoo/etc/portage/repos.conf

Kopieren Sie dann die von Portage bereitgestellte Gentoo Repository-Konfigurationsdatei in das (neu erstellte) Verzeichnis repos.conf:

root #cp /mnt/gentoo/usr/share/portage/config/repos.conf /mnt/gentoo/etc/portage/repos.conf/gentoo.conf

Schauen Sie sich die Datei mit einem Texteditor oder mit dem cat-Befehl an. Die Datei sollte ein .ini-Format haben und ungefähr so aussehen:

DATEI /mnt/gentoo/etc/portage/repos.conf/gentoo.conf
[DEFAULT]
main-repo = gentoo
 
[gentoo]
location = /var/db/repos/gentoo
sync-type = rsync
sync-uri = rsync://rsync.gentoo.org/gentoo-portage
auto-sync = yes
sync-rsync-verify-jobs = 1
sync-rsync-verify-metamanifest = yes
sync-rsync-verify-max-age = 24
sync-openpgp-key-path = /usr/share/openpgp-keys/gentoo-release.asc
sync-openpgp-key-refresh-retry-count = 40
sync-openpgp-key-refresh-retry-overall-timeout = 1200
sync-openpgp-key-refresh-retry-delay-exp-base = 2
sync-openpgp-key-refresh-retry-delay-max = 60
sync-openpgp-key-refresh-retry-delay-mult = 4

Der hier gezeigte Standard-Wert der Variable sync-uri wählt den Ort des Spiegelservers basierend auf einer Rotation. Das hilft dabei, die Bandbreitenbelastung auf Gentoos Infrastruktur auszugleichen und hilft in Fällen, in denen ein bestimmter Spiegelserver offline ist. Es wird empfohlen, diese Standard-URI beizubehalten - sofern nicht ein lokaler, privater Portage Spiegel verwendet werden soll.

Tip
Falls Sie an Details interessiert sind, finden Sie die offizielle Spezifikation der Portage Sync-Plugin-API in einem Sync Artikel des Portage-Projekts.

DNS-Info kopieren

Eine Sache bleibt noch zu tun, bevor Sie die neue Umgebung betreten - und das ist das Kopieren der DNS-Informationen in der Datei /etc/resolv.conf. Dies ist notwendig um sicherzustellen, dass Netz-Verbindungen auch nach dem Betreten der neuen Umgebung noch funktionieren. /etc/resolv.conf enthält u.a. die IP-Adressen der Namensserver.

Zum Kopieren dieser Information ist es empfehlenswert, beim Befehl cp die Option --dereference zu verwenden. Wenn /etc/resolv.conf ein symbolischer Link ist stellt dies sicher, dass die Zieldatei anstelle des symbolischen Links selbst kopiert wird. Andernfalls würde der symbolische Link auf eine nicht existierende Datei zeigen (weil das Link-Ziel höchstwahrscheinlich in der neuen Umgebung nicht verfügbar ist).

root #cp --dereference /etc/resolv.conf /mnt/gentoo/etc/

Notwendige Dateisysteme einhängen

In wenigen Augenblicken wird Linux root (/) auf den neuen Ort geändert werden. Um sicherzustellen, dass die neue Umgebung richtig arbeitet, müssen bestimmte Dateisysteme dort ebenfalls verfügbar gemacht werden.

Die Dateisysteme, die verfügbar gemacht werden müssen, sind:

  • /proc/ ist ein ein Pseudo-Dateisystem (Die beinhalteten Dateien sehen aus wie gewöhnliche Dateien, sie werden jedoch im laufenden Betrieb generiert). Der Kernel stellt hier der Umgebung Informationen zur Verfügung.
  • /sys/ ist ein Pseudo-Dateisystem wie /proc/ ist. Einst war es dafür gedacht, dieses zu ersetzen, und es ist besser strukturiert als /proc/.
  • /dev/ ist ein gewöhnliches Dateisystem, teilweise vom Linux Device Manager (normalerweise udev) verwaltet, das alle Gerätedateien enthält.

/proc/ wird an /mnt/gentoo/proc/ eingehängt (mount), wohingegen die anderen zwei über mount --rbind eingebunden werden. Das letztere bedeutet beispielsweise dass /mnt/gentoo/sys/ in Wirklichkeit /sys/ ist (es ist lediglich ein zweiter Einstiegspunkt zum selben Dateisystem), wohingegen /mnt/gentoo/proc/ ein neuer Einhängepunkt (sozusagen eine neue Instanz) des Dateisystems ist.

root #mount --types proc /proc /mnt/gentoo/proc
root #mount --rbind /sys /mnt/gentoo/sys
root #mount --make-rslave /mnt/gentoo/sys
root #mount --rbind /dev /mnt/gentoo/dev
root #mount --make-rslave /mnt/gentoo/dev
Notiz
Die --make-rslave Operationen werden für die spätere systemd Unterstützung bei der Installation benötigt.
Warnung
Bei der Verwendung von nicht-Gentoo Installationsmedien könnte dies nicht ausreichen. Bei einigen Distributionen ist /dev/shm ein symbolischer Link zu /run/shm/, der nach chroot ungültig wird. Dies kann behoben werden, indem Sie /dev/shm/ im Voraus zu einem entsprechenden tmpfs mount machen:
root #test -L /dev/shm && rm /dev/shm && mkdir /dev/shm
root #mount --types tmpfs --options nosuid,nodev,noexec shm /dev/shm

Stellen Sie zudem sicher, dass Mode 1777 gesetzt ist:

root # chmod 1777 /dev/shm

Betreten der neuen Umgebung

Nun, da alle Partitionen initialisiert sind und die Basis-Umgebung installiert ist, wird es Zeit, die neue Installationsumgebung durch chroot zu betreten. Das bedeutet, dass die Sitzung ihr Wurzelverzeichnis (/) von der aktuellen Installationsumgebung (Installations-CD oder anderes Installationsmedium) zum Installationssystem (nämlich die initialisierten Partitionen) ändert. Daher der Name change root oder chroot.

Dieses Chrooten erfolgt in drei Schritten:

  1. Das Wurzelverzeichnis wird mit Hilfe von chroot von / (auf dem Installationsmedium) auf /mnt/gentoo/ (auf den Partitionen) geändert.
  2. Einige Einstellungen (jene in /etc/profile) werden über den Befehl source neu in den Speicher geladen.
  3. Die primäre Eingabeaufforderung wird geändert, damit wir nicht vergessen, dass diese Sitzung innerhalb einer chroot-Umgebung läuft.
root #chroot /mnt/gentoo /bin/bash
root #source /etc/profile
root #export PS1="(chroot) ${PS1}"

Von diesem Punkt an werden alle Aktionen direkt auf der neuen Gentoo Linux Umgebung ausgeführt. Natürlich sind wir noch lange nicht fertig - weshalb auch diese Installations-Anleitung noch einige Abschnitte und Kapitel bereit hält!

Tip
Wenn die Installation bei einem der ab hier folgenden Schritte unterbrochen werden sollte, sollte es möglich sein, ab dieser hier Stelle weiterzuarbeiten. Es ist nicht nötig, die Partitionen erneut zu erstellen! Mounten Sie die Root-Partition und führen Sie die oben beschriebenen Schritte ab DNS-Info kopieren erneut aus, um wieder in die neue Gentoo Linux Umgebung zu gelangen. Dieses Vorgehen ist ebenfalls sinnvoll, um Bootloader-Probleme zu beheben. Weitere Informationen erhalten Sie im chroot Artikel.

Einhängen der Boot-Partition

Als nächstes sollte die Boot-Partition eingehängt werden. Diese wird benötigt, wenn Sie später den Kernel compilieren und den Boot-Loader installieren wollen:

root #mount /dev/sda1 /boot

Portage konfigurieren

Ein ebuild Repository Snapshot aus dem Web installieren

Der nächste Schritt besteht darin, einen Snapshot des primären ebuild Repository zu installieren. Dieser Snapshot enthält eine Sammlung von Dateien, die Portage informiert über verfügbare Software-Titel (für die Installation), welche Profile der Administrator auswählen kann, Paket- oder Profil-spezifische News-Items, usw.

Die Verwendung von emerge-webrsync wird empfohlen für diejenigen, die hinter einer restriktiven Firewall sitzen (weil es den Snapshot über HTTP/FTP herunterlädt) und für diejenigen, die Netzwerk-Bandbreite sparen wollen. Leser, die keine Einschränkungen durch Firewalls oder von der Netzwerk-Bandbreite haben, können zum nächsten Abschnitt springen.

Der folgende Befehl holt den neuesten Portage-Snapshot (den Gentoo tagesaktuell veröffentlicht) von einem der Gentoo-Spiegel und installiert ihn auf dem System.

root #emerge-webrsync
Notiz
Während dieser Operation könnte sich emerge-webrsync über das Fehlen von /var/db/repos/gentoo/ beschweren. Dies ist zu erwarten und kein Grund zur Sorge - das Tool wird das Verzeichnis anlegen.

Von diesem Punkt an könnte Portage erwähnen, dass bestimmte Updates empfehlenswert sind. Dies ist deshalb so, weil es möglicherweise neuere Versionen von Paketen gibt, die durch das Stage Tar-Archiv installiert wurden. Nach der Installation des Repository Snapshots weiß Portage nun von diesen neueren Versionen. Paket-Updates können im Augenblick bedenkenlos ignoriert werden. Die Updates können verzögert werden, bis die Gentoo Installation abgeschlossen ist.

Optional: Gentoo ebuild Repository aktualisieren

Es ist möglich, das Gentoo ebuild Repository mit emerge auf die neueste Version zu aktualisieren. Wenn Sie mit dem vorhergehenden Befehl emerge-webrsync einen aktuellen Snapshot installiert haben (Snapshots sind in der Regel nicht älter als 24 Stunden), ist dieser Schritt optional.

Angenommen Sie benötigen die neuesten Paket-Updates (bis zu 1 Stunde), dann benutzen Sie emerge --sync. Dieser Befehl nutzt das rsync Protokoll zur Aktualisierung des Gentoo ebuild Repository (welcher zuvor durch emerge-webrsync bezogen wurde) auf den aktuellsten Stand.

root #emerge --sync

Auf langsamen Terminals, wie einigen Framebuffer- oder seriellen Konsolen, ist es empfehlenswert, die Option --quiet zu nutzen, um den Vorgang zu beschleunigen:

root #emerge --sync --quiet

News Items lesen

Wenn das Gentoo ebuild Repository auf das System synchronisiert wird, könnte Portage den Benutzer wie folgt warnen:

* IMPORTANT: 2 news items need reading for repository 'gentoo'.
* Use eselect news to read news items.

News Items wurden als Kommunikationsmedium geschaffen, um den Benutzern wichtige Mitteilungen über den rsync Baum zukommen lassen zu können. Zur Verwaltung verwenden Sie eselect news. Die Anwendung eselect ist ein Gentoo-Programm, das eine gemeinsame Verwaltungsschnittstelle für System-Änderungen und -Operationen bietet. In diesem Fall wird eselect aufgefordert das Modul news zu verwenden.

Im Modul news werden drei Operationen am meisten genutzt:

  • Mit list wird eine Übersicht der verfügbaren News-Einträge angezeigt.
  • Mit read können die News-Einträge gelesen werden.
  • Mit purge lassen sich News-Einträge löschen, sobald sie gelesen wurden. Ein erneutes Einlesen erfolgt nicht.
root #eselect news list
root #eselect news read

Mehr Informationen zum Newsreader sind über seine Manpage verfügbar:

root #man news.eselect

Auswahl des richtigen Profils

Ein Profil (profile) ist wichtiger Baustein für jedes Gentoo System. Es definiert nicht nur Standardwerte für USE, CFLAGS und andere wichtige Variablen, sondern legt das System auch auf einen bestimmten Bereich von Paketversionen fest. Diese Einstellungen werden von den Gentoo Portage-Entwicklern gepflegt.

Mit eselect können Sie sich anschauen, welches Profil das System momentan nutzt, diesmal mit dem Modul profile:

root #eselect profile list
Available profile symlink targets:
  [1]   default/linux/mips/ *
  [2]   default/linux/mips//desktop
  [3]   default/linux/mips//desktop/gnome
  [4]   default/linux/mips//desktop/kde
Notiz
Die Ausgabe des Befehls ist nur ein Beispiel und kann sich im Laufe der Zeit ändern.

Wie Sie sehen, stehen Desktop-Unterprofile für einige Architekturen zur Verfügung.

Warnung
Profil-Upgrades sind nicht einfach. Wenn Sie das initiale Profil auswählen, sollten Sie sicherstellen, dass es die selbe Versionsnummer hat, wie das Profil, das vom Stage3 Tar-Archiv installiert wurde (beispielsweise 17.1). Neue Profil-Versionen werden über News Items angekündigt, die detaillierte Migrationsanleitungen enthalten. Bitte lesen und folgen Sie diesen Migrationsanleitungen bevor Sie auf ein neues Profil wechseln.

Nach dem Betrachten der verfügbaren Profile für die mips Architektur kann der Benutzer ein anderes Profil für das System wählen:

root #eselect profile set 2



Notiz
Das developer Unterprofil ist eigens für die Gentoo Linux Entwicklung und nicht für die Nutzung durch gewöhnliche Benutzer gedacht.

@world set updaten

An dieser Stelle sollte das @world set upgedatet werden, um Ihr System auf eine solide Basis zu stellen.

Der folgende Schritt ist erforderlich, damit Ihre Änderungen am Profil wirksam werden. Weiterhin werden alle Pakete aktualisiert, für die es nach dem Erstellungszeitpunkt des von Ihnen installierten Stage Tar-Archivs Updates oder Änderungen an den USE Flags gibt.

root #emerge --ask --verbose --update --deep --newuse @world
Tip
Wenn Sie ein Profil für eine vollständige Desktop-Umgebung (wie KDE oder GNOME) gewählt haben, kann der obige emerge-Befehl recht lange dauern. Wer unter Zeitdruck steht, kann folgende 'Daumenregel' verwenden: je kürzer der Profil-Name, desto weniger umfangreich ist das @world set des Systems, desto weniger Pakete müssen installiert werden. Mit anderen Worten:
  • die Wahl von default/linux/amd64/17.1 führt zu wenigen Paketen, die upgedatet werden müssen, während
  • bei der Wahl von default/linux/amd64/17.1/desktop/gnome/systemd viele Pakete installiert werden müssen, weil ein Wechsel von OpenRC zu Systemd stattfindet und die GNOME Desktop-Umgebung installiert werden muss.

USE Variable konfigurieren

USE ist eine der mächtigsten Variablen, die Gentoo seinen Benutzern bietet. Viele Programme können mit oder ohne optionale Unterstützung für bestimmte Dinge kompiliert werden. Beispielsweise können einige Programme mit GTK- oder Qt-Unterstützung kompiliert werden. Andere können mit oder ohne SSL-Unterstützung kompiliert werden. Einige Programme können sogar mit Framebuffer-Unterstützung (svgalib) anstelle von X11-Unterstützung (X-Server) kompiliert werden.

Die meisten Distributionen kompilieren ihre Pakete mit Unterstützung für möglichst viel. Dies erhöht die Größe der Programme und verlängert die Programmstartzeit, nicht zu erwähnen die enorme Menge von Abhängigkeiten. Mit Gentoo können die Benutzer definieren, mit welchen Optionen ein Paket kompiliert werden soll. Hier kommt USE ins Spiel.

In der Variablen USE definieren die Benutzer Schlüsselwörter, die auf Optionen beim Kompilieren abgebildet werden. Beispielsweise kompiliert ssl SSL Unterstützung in die Programme, die das unterstützen. -X entfernt X-Server-Unterstützung (beachten Sie das Minuszeichen am Anfang). gnome gtk -kde -qt5 kompiliert Programme mit GNOME und GTK+ Unterstützung, aber nicht mit KDE und Qt5 Unterstützung. Das führt zu einem System, das komplett für GNOME optimiert ist (vorausgesetzt die Architektur unterstützt es).

Die Standard-USE-Einstellungen befinden sich in den make.defaults Dateien des Gentoo-Profils, das das System verwendet. Gentoo benutzt ein (komplexes) Vererbungssystem für seine Profile, in das wir in dieser Phase nicht eintauchen wollen. Der einfachste Weg, die momentan aktiven USE Einstellungen zu überprüfen, ist emerge --info auszuführen und die Zeile auszuwählen, die mit USE beginnt:

root #emerge --info | grep ^USE
USE="X acl alsa amd64 berkdb bindist bzip2 cli cracklib crypt cxx dri ..."
Notiz
Das obige Beispiel ist verkürzt, die tatsächliche Liste der USE-Werte ist viel viel länger.

Eine vollständige Beschreibung der verfügbaren USE-Flags finden Sie auf dem System in der Datei /var/db/repos/gentoo/profiles/use.desc.

root #less /var/db/repos/gentoo/profiles/use.desc

Innerhalb des Befehls less können Sie mit Hilfe der Tasten und scrollen. Zum Beenden drücken Sie q.

Als Beispiel zeigen wir die USE Einstellung für ein KDE-basiertes System mit DVD, ALSA und CD-Aufnahme Unterstützung:

root #nano -w /etc/portage/make.conf
DATEI /etc/portage/make.confUSE-Flags für ein KDE-basiertes System mit Unterstützung für DVD, ALSA und CD-Aufnahme
USE="-gtk -gnome qt4 qt5 kde dvd alsa cdr"

Wenn USE in /etc/portage/make.conf definiert ist, dann wird ein bestimmtes USE-Flag zur Standard Liste hinzugefügt (oder davon entfernt, wenn das USE-Flag mit dem Zeichen - beginnt). Benutzer, die alle Standard-USE-Einstellungen ignorieren wollen und sie komplett selbst verwalten möchten, sollten die USE-Definition in make.conf mit -* beginnen:

DATEI /etc/portage/make.confStandard USE-Flags ignorieren
USE="-* X acl alsa"
Warnung
Die Verwendung von -* (wie im obigen Beispiel) ist zwar möglich und erlaubt - wir raten jedoch davon ab, weil dies zu Abhängigkeits-Konflikten und anderen Fehlern führen kann.

Optional: Die ACCEPT_LICENSE Variable konfigurieren

Bei allen Gentoo Paketen ist vermerkt, unter welcher Lizenz das Paket verteilt und genutzt werden darf. Dadurch können Anwender Gentoo Pakete schon vor einer Installation nach Lizenzen oder Lizenz-Gruppen auswählen.

Wichtig
Die LICENSE Variable in den ebuilds ist nur eine Richtlinie für Gentoo Entwickler und Anwender. Die dort angegebenen Informationen sind NICHT rechtsverbindlich und es gibt keine Garantie, dass sie der Realität entsprechen. Verlassen Sie sich NICHT auf die LICENSE Variable, sondern überprüfen Sie die Lizenzbedingungen des Pakets selbst gründlich. Dies gilt auch für alle im Paket enthaltenen Dateien, die Sie nutzen.

Portage verwendet die Variable ACCEPT_LICENSE um zu ermitteln, welche Pakete installiert werden dürfen. Ausnahmen für einzelne Pakete können in der Datei /etc/portage/package.license definiert werden.

Die folgende Tabelle zeigt die im Gentoo Repository definierten Lizenz-Gruppen. Die Lizenz-Gruppen werden vom Gentoo Licenses Projekt verwaltet.

Gruppen-Name Beschreibung
@GPL-COMPATIBLE GPL compatible licenses approved by the Free Software Foundation [a_license 1]
@FSF-APPROVED Free software licenses approved by the FSF (includes @GPL-COMPATIBLE)
@OSI-APPROVED Licenses approved by the Open Source Initiative [a_license 2]
@MISC-FREE Misc licenses that are probably free software, i.e. follow the Free Software Definition [a_license 3] but are not approved by either FSF or OSI
@FREE-SOFTWARE Combines @FSF-APPROVED, @OSI-APPROVED and @MISC-FREE
@FSF-APPROVED-OTHER FSF-approved licenses for "free documentation" and "works of practical use besides software and documentation" (including fonts)
@MISC-FREE-DOCS Misc licenses for free documents and other works (including fonts) that follow the free definition [a_license 4] but are NOT listed in @FSF-APPROVED-OTHER
@FREE-DOCUMENTS Combines @FSF-APPROVED-OTHER and @MISC-FREE-DOCS
@FREE Metaset of all licenses with the freedom to use, share, modify and share modifications. Combines @FREE-SOFTWARE and @FREE-DOCUMENTS
@BINARY-REDISTRIBUTABLE Licenses that at least permit free redistribution of the software in binary form. Includes @FREE
@EULA License agreements that try to take away your rights. These are more restrictive than "all-rights-reserved" or require explicit approval

Über das gewählte Gentoo Profil wird ein vordefinierter Wert für ACCEPT_LICENSE gesetzt, beispielsweise:

user $portageq envvar ACCEPT_LICENSE
@FREE

Der von den Profilen gesetzte Wert akzeptiert nur Lizenzen, die ausdrücklich genehmigt wurden von der Free Software Foundation oder der Open Source Initiative oder die der Free Software Definition entsprechen.

Dieser Wert kann systemweit überschrieben werden in der Datei /etc/portage/make.conf:

DATEI /etc/portage/make.confSystemweite Anpassung von ACCEPT_LICENSE
ACCEPT_LICENSE="-* @FREE"

Wenn nötig und gewünscht, können auch Ausnahmen für einzelne Pakete definiert werden. Beispielsweise:

DATEI /etc/portage/package.licenseAusnahmen für einzelne Pakete
app-arch/unrar unRAR
sys-kernel/linux-firmware @BINARY-REDISTRIBUTABLE
sys-firmware/intel-microcode intel-ucode


Zeitzone

Wählen Sie die Zeitzone für das System. Schauen Sie nach den verfügbaren Zeitzonen in /usr/share/zoneinfo/ und schreiben Sie die gewünschte Zeitzone in die Datei /etc/timezone.

root #ls /usr/share/zoneinfo

Angenommen die Zeitzone der Wahl ist Europe/Brussels:

root #echo "Europe/Brussels" > /etc/timezone

Bitte vermeiden Sie die /usr/share/zoneinfo/Etc/GMT* Zeitzonen, da deren Namen nicht die erwarteten Zonen anzeigen. Beispielsweise ist GMT-8 in der Tat GMT+8.

Als Nächstes konfigurieren Sie das Paket sys-libs/timezone-data neu. Dies wird für uns abhängig vom Eintrag in der Datei /etc/timezone die Datei /etc/localtime aktualisieren. Die Datei /etc/localtime wird von der System C Bibliothek verwendet um zu erfassen in welcher Zeitzone sich das System befindet.

root #emerge --config sys-libs/timezone-data

Konfiguration der Locale

Die meisten Benutzer werden nur ein oder zwei Locale auf ihrem System verwenden.

Locale geben nicht nur die Sprache an, mit der Anwender mit dem System interagieren sollen, sondern ebenfalls die Regeln zum Sortieren von Zeichenketten, der Anzeige des Datums, der Zeit usw.

Die Locale, die ein System unterstützen soll, müssen in der Datei /etc/locale.gen konfiguriert werden.

root #nano -w /etc/locale.gen

Das folgende Beispiel zeigt eine Konfiguration für Englisch (Vereinigte Staaten) und Deutsch (Deutschland) mit den Zeichenkodierungen Latin-1 und UTF-8:

DATEI /etc/locale.genKonfiguration von Locale und Zeichenkodierungen
en_US ISO-8859-1
en_US.UTF-8 UTF-8
de_DE ISO-8859-1
de_DE.UTF-8 UTF-8
Tip
Anwender aus Österreich oder aus der Schweiz können anstelle von (oder zusätzlich zu) "de_DE" wählen: "de_AT" oder "de_CH".
Tip
Eine Liste aller erlaubten Werte finden Sie in der Datei /usr/share/i18n/SUPPORTED. Bitte achten Sie auf Groß- und Kleinschreibung und verwenden Sie keine anderen Werte.
Warnung
Wir empfehlen nachdrücklich die Verwendung von mindestens einem UTF-8 Locale, weil einige Anwendungen dies möglicherweise erfordern.

Der nächste Schritt ist locale-gen auszuführen. Dies wird alle Locales erzeugen, die in der Datei /etc/locale.gen angegeben sind.

root #locale-gen

Um zu überprüfen, ob die ausgewählten Locale jetzt verfügbar sind, führen Sie locale -a aus. Dieser Befehl muss die konfigurierten Locale anzeigen - ansonsten hat locale-gen nicht funktioniert.

Sobald Sie das erledigt haben, ist es Zeit, die systemweiten Locale-Einstellungen zu setzen. Wir verwenden wieder eselect dafür, diesmal mit dem Modul locale.

Mit eselect locale list werden die verfügbaren Locale angezeigt:

root #eselect locale list
Verfügbare Locale für die LANG Variable:
  [1] C
  [2] POSIX
  [3] en_US
  [4] en_US.iso88591
  [5] en_US.utf8
  [6] de_DE
  [7] de_DE.iso88591
  [8] de_DE.iso885915
  [9] de_DE.utf8
  [ ] (free form)

Mit eselect locale set WERT kann die gewünschte Locale eingestellt werden:

root #eselect locale set 9

Manuell kann dies auch durch die Datei /etc/env.d/02locale erreicht werden:

DATEI /etc/env.d/02localeManuelles Setzen der System Locale Definitionen
LANG="de_DE.UTF-8"
LC_COLLATE="C"

Stellen Sie sicher, dass ein Locale eingestellt ist, da das System andernfalls Warnungen und Fehler während des Bau des Kernels und bei anderem Softwareeinsatz später bei der Installation ausgibt.

Laden Sie jetzt die Umgebung erneut, damit die Änderung der Locale-Einstellung in Ihrer Shell wirksam wird:

root #env-update && source /etc/profile && export PS1="(chroot) ${PS1}"

Wir haben einen vollständigen Lokalisierungs-Leitfaden erstellt, um die Benutzer durch diesen Prozess zu leiten. Ein weiterer interessanter Artikel ist der UTF-8-Leitfaden mit detaillierten Informationen zum Aktivieren von UTF-8 auf dem System.




Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎polski • ‎русский • ‎українська • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
MIPS Handbuch
Installation
Über die Installation
Auswahl des Mediums
Konfiguration des Netzwerks
Vorbereiten der Festplatte(n)
Installation des Stage Archivs
Installation des Basissystems
Konfiguration des Kernels
Konfiguration des Systems
Installation der Tools
Konfiguration des Bootloaders
Abschluss
Arbeiten mit Gentoo
Portage-Einführung
USE-Flags
Portage-Features
Initskript-System
Umgebungsvariablen
Arbeiten mit Portage
Dateien und Verzeichnisse
Variablen
Mischen von Softwarezweigen
Zusätzliche Tools
Eigener Portage-Tree
Erweiterte Portage-Features
Netzwerk-Konfiguration
Zu Beginn
Fortgeschrittene Konfiguration
Modulare Vernetzung
Drahtlose Netzwerke
Funktionalität hinzufügen
Dynamisches Management


Installation der Quellen

Der Linux Kernel ist der Kern, um den herum alle Distributionen gebaut sind. Er ist die Schicht zwischen den Benutzerprogrammen und der Systemhardware. Gentoo bietet seinen Benutzern verschiedene Kernel-Quellen. Eine komplette Liste mit einer Beschreibung finden Sie auf der Kernel Übersichtsseite.

Bei mips-basierten Systemen empfiehlt Gentoo das sys-kernel/mips-sources Paket.

Wählen Sie eine passende Kernel-Quelle und installieren Sie diese mit emerge:

root #emerge --ask sys-kernel/mips-sources

Dies installiert die Quellen des Linux Kernel im Verzeichnis /usr/src/, in welchem ein symbolischer Link namens linux auf die installierten Kernel-Quellen zeigt:

root #ls -l /usr/src/linux
lrwxrwxrwx    1 root   root    12 Oct 13 11:04 /usr/src/linux -> linux-3.16.5-gentoo

Jetzt ist es Zeit, die Kernel-Quellen zu konfigurieren und zu kompilieren. Dafür gibt es zwei Ansätze:

  1. Der Kernel wird manuell konfiguriert und gebaut.
  2. Sie verwenden das Werkzeug genkernel, um den Linux Kernel automatisch zu bauen und zu installieren.

Wir erklären hier die manuelle Konfiguration als Standardwahl, weil dies der beste Weg ist, eine Umgebung zu optimieren.

Standard: Manuelle Konfiguration

Einleitung

Einen Kernel manuell zu konfigurieren wird oft als die schwierigste Aufgabe gesehen, die ein Linux Benutzer jemals durchzuführen hat. Nichts ist weiter von der Wahrheit entfernt. Nach der Konfiguration einiger Kernel werden Sie sich nicht mehr daran erinnern, dass es jemals schwer war. ;)

Eine Sache ist jedoch wahr: um einen Kernel manuell konfigurieren zu können, ist es wichtig, das System zu kennen. Die meisten Informationen erhalten Sie durch das Programm lspci, das im Paket sys-apps/pciutils enthalten ist.

root #emerge --ask sys-apps/pciutils
root #lspci
root #lspci -v
Notiz
Innerhalb der chroot-Umgebung können Sie jegliche pcilib-Warnung (wie pcilib: cannot open /sys/bus/pci/devices) ignorieren, die lspci auswerfen könnte.

Eine weitere Quelle von Systeminformationen ist lsmod. Diese Anweisung zeigt Ihnen, welche Kernel-Module die Installations-CD verwendet. Dies liefert gute Hinweise darauf, was im Kernel aktiviert werden sollte.

Gehen Sie in das Kernel Quellverzeichnis und führen Sie make menuconfig aus. Dies wird eine menübasierte Konfigurationsmaske starten.

root #cd /usr/src/linux
root #make menuconfig

Die Linux Kernel-Konfiguration hat viele, viele Abschnitte. Wir listen zunächst einige Optionen auf, die aktiviert werden müssen (ansonsten wird Gentoo nicht funktionieren, oder ohne zusätzliche Veränderungen nicht richtig funktionieren). Wir haben im Gentoo Wiki auch einen Gentoo Kernel-Konfigurationsleitfaden, der weiterhelfen könnte.

Aktivieren der benötigten Optionen

Stellen Sie sicher, dass jeder Treiber, der zum Booten des Systems notwendig ist (wie z.B. SCSI-Controller, usw.), direkt in den Kernel kompiliert ist (nicht als Modul). Andernfalls wird das System nicht in der Lage sein, komplett zu booten.

Als Nächstes wählen Sie den genauen Prozessor-Typ. Es wird auch empfohlen, die MCE-Funktion zu aktivieren (wenn verfügbar), so dass Benutzer bei Hardwareproblemen benachrichtigt werden können. Auf einigen Architekturen (wie z.B. X86_64) werden diese Fehler nicht über dmesg, sondern auf /dev/mcelog ausgegeben. Dies erfordert das Paket app-admin/mcelog.

Wählen Sie auch Maintain a devtmpfs file system to mount at /dev, damit kritische Gerätedateien bereits früh im Boot-Prozess verfügbar sind (CONFIG_DEVTMPFS and CONFIG_DEVTMPFS_MOUNT):

KERNEL devtmpfs-Unterstützung aktivieren
Device Drivers --->
  Generic Driver Options --->
    [*] Maintain a devtmpfs filesystem to mount at /dev
    [ ]   Automount devtmpfs at /dev, after the kernel mounted the rootfs

Überprüfen Sie, dass SCSI disk Unterstützung aktiviert wurde (CONFIG_BLK_DEV_SD):

KERNEL SCSI disk Unterstützung aktivieren
Device Drivers --->
   SCSI device support  --->
      <*> SCSI disk support

Gehen Sie nun zu den Dateisystemen (File Systems) und aktivieren Sie die Dateisysteme, die Sie verwenden. Kompilieren Sie das Dateisystem, das als Root-Dateisystem verwendet wird, nicht als Modul. Andernfalls wird das Gentoo-System nicht in der Lage sein, die Root-Partition einzuhängen. Wählen Sie ebenfalls Virtual memory und /proc file system. Wählen Sie eine oder mehrere Dateisysteme, die Sie auf Ihrem System verwenden wollen (CONFIG_EXT2_FS, CONFIG_EXT3_FS, CONFIG_EXT4_FS, CONFIG_MSDOS_FS, CONFIG_VFAT_FS, CONFIG_PROC_FS, and CONFIG_TMPFS):

KERNEL Auswahl notwendiger Dateisysteme
File systems --->
  <*> Second extended fs support
  <*> The Extended 3 (ext3) filesystem
  <*> The Extended 4 (ext4) filesystem
  <*> Reiserfs support
  <*> JFS filesystem support
  <*> XFS filesystem support
  <*> Btrfs filesystem support
  DOS/FAT/NT Filesystems  --->
    <*> MSDOS fs support
    <*> VFAT (Windows-95) fs support
 
Pseudo Filesystems --->
    [*] /proc file system support
    [*] Tmpfs virtual memory file system support (former shm fs)

Wenn PPPoE für die Internetverbindung, oder ein Einwahl-Modem verwendet wird, aktivieren Sie die folgenden Optionen (CONFIG_PPP, CONFIG_PPP_ASYNC, and CONFIG_PPP_SYNC_TTY):

KERNEL Auswahl der Treiber für PPPoE
Device Drivers --->
  Network device support --->
    <*> PPP (point-to-point protocol) support
    <*>   PPP support for async serial ports
    <*>   PPP support for sync tty ports

Die beiden Komprimierungsoptionen schaden nicht, werden aber auch nicht unbedingt benötigt. Ebenso wenig wie die PPP over Ethernet Option, die vielleicht nur von ppp benötigt wird, wenn 'kernel mode PPPoE' konfiguriert wird.

Vergessen Sie nicht, die Unterstützung von Netzwerkkarten (Ethernet oder Wireless-LAN) zu aktivieren.

Die meisten Systeme haben auch mehrere Prozessorkerne zur Verfügung. Daher ist es wichtig, Symmetric multi-processing support zu aktivieren (CONFIG_SMP):

KERNEL SMP-Unterstützung aktivieren
Processor type and features  --->
  [*] Symmetric multi-processing support
Notiz
In Mehrkernsystemen zählt jeder Kern als ein Prozessor.

Wenn Sie USB-Eingabegeräte (wie Tastatur oder Maus) oder andere USB-Geräte verwenden, vergessen Sie nicht, diese ebenfalls zu aktivieren (CONFIG_HID_GENERIC and CONFIG_USB_HID, CONFIG_USB_SUPPORT, CONFIG_USB_XHCI_HCD, CONFIG_USB_EHCI_HCD, CONFIG_USB_OHCI_HCD):

KERNEL USB-Unterstützung für Eingabegeräte aktivieren
Device Drivers --->
  HID support  --->
    -*- HID bus support
    <*>   Generic HID driver
    [*]   Battery level reporting for HID devices
      USB HID support  --->
        <*> USB HID transport layer
  [*] USB support  --->
    <*>     xHCI HCD (USB 3.0) support
    <*>     EHCI HCD (USB 2.0) support
    <*>     OHCI HCD (USB 1.1) support


Vorbereitung der Konfiguration

Wichtig
Auf dem Origin 200/2000, Indigo2 Impact (R10000), Octane/Octane2 und O2 wird ein 64-Bit Kernel zum Booten dieser Systeme benötigt. emergen Sie sys-devel/kgcc64 für diese Maschinen, um einen Cross-Compiler zum Bau von 64-Bit Kernels zu erzeugen.

Viele der unterstützten Systeme haben Beispiel .configs, die sich in den Kernel-Quellen verstecken. Nicht alle Systeme haben Konfigurationen, die auf diese Weise verteilt werden. Diejenigen bei denen das aber so ist, können durch Verwendung der in der Tabelle unten aufgeführten Befehle konfiguriert werden.

System Configure command
Cobalt Servers make cobalt_defconfig
Indy, Indigo2 (R4k), Challenge S make ip22_defconfig
Origin 200/2000 make ip27_defconfig
Indigo2 Impact (R10k) make ip28_defconfig
O2 make ip32_defconfig

All of the Gentoo installation images provide a kernel config option as part of the image itself, accessible as /proc/config.gz. This may be used in many cases. It is best though if the kernel source matches closely the kernel that is currently running. To extract it, simply run it through zcat as shown below.

root #zcat /proc/config.gz > .config
Wichtig
This kernel config is set up for a netboot image. That is, it will expect to find a root filesystem image somewhere nearby, either as a directory for initramfs, or a loopback device for initrd. When executing make menuconfig, don't forget to go into General Setup and disable the options for initramfs.

Anpassen der Konfiguration

Once a configuration is found, download it into the kernel source directory, and rename it to .config. From there, run make oldconfig to bring everything up to date according to the instructions above, and customize the configuration before compiling.

root #cd /usr/src/linux
root #cp /path/to/example-config .config
root #make oldconfig

Just press the ENTER (or Return) key at each prompt to accept the defaults for now ...

root #make menuconfig
Wichtig
In the Kernel Hacking section, there is an option named "Are You Using A Cross Compiler?". This tells the kernel Makefiles to prepend "mips-linux-" (or mipsel-linux ... etc) to gcc and as commands when compiling the kernel. This should be turned off, even if cross-compiling. Instead, if a cross-compiler needs to be called, specify the prefix using the CROSS_COMPILE variable as shown in the next section.
Wichtig
Es gibt auf Octane Systemen ein bekanntes Problem mit JFS und ALSA, auf denen ALSA nicht funktioniert. Angesichts des experimentellen Charakters von JFS auf MIPS wird zurzeit empfohlen die Nutzung von JFS zu vermeiden.

Kompilieren und installieren

Mit beendeter Konfiguration ist es an der Zeit den Kernel zu kompilieren und zu installieren. Schließen Sie die Konfiguration und starten Sie den Kompiliervorgang:

Notiz
Geben Sie auf 64-Bit Maschinen CROSS_COMPILE=mips64-unknown-linux-gnu- (oder auf Little-Endian Systemen mips64el-...) an, um den 64-Bit Compiler zu nutzen.

Um nativ zu kompilieren:

root #make vmlinux modules modules_install

Passen Sie das "mips64-unknown-linux-gnu-" zur Cross-Kompilierung für den Zielcomputer entsprechend an:

root #make vmlinux modules modules_install CROSS_COMPILE=mips64-unknown-linux-gnu-

Wenn Sie auf einer anderen Maschine kompilieren (wie beispielsweise einem x86 Rechner), verwenden Sie die folgenden Befehle um den Kernel zu kompilieren und die Module in ein bestimmtes Verzeichnis zu installieren zur Übertragung auf die Zielmaschine.

root #make vmlinux modules CROSS_COMPILE=mips64-unknown-linux-gnu-
root #make modules_install INSTALL_MOD_PATH=/somewhere
Wichtig
Wenn Sie einen 64-Bit Kernel für den Indy, Indigo2 (R4k), Challenge S und O2 kompilieren, verwenden Sie anstelle von vmlinux das vmlinux.32 Target. Ansonsten wird die Maschine nicht booten können. Dies ist ein Workaround des Problems, das das PROM nicht das ELF64 Format versteht.
root #make vmlinux.32
Notiz
It is possible to enable parallel builds using make -jX with X being the number of parallel tasks that the build process is allowed to launch. This is similar to the instructions about /etc/portage/make.conf earlier, with the MAKEOPTS variable.

Die Zeilen oben erzeugen vmlinux.32, das der finale Kernel ist.

Wenn der Kernel mit dem Kompilieren fertig ist, kopieren Sie das Kernel Abbild nach /boot/.

Notiz
Der Bootloader auf Cobaltservern erwartet ein komprimiertes Kernel Abbild. Denken Sie daran die Datei mit gzip -9 zu komprimieren, sobald Sie sich im Verzeichnis /boot/ befindet.
root #cp vmlinux /boot/kernel-3.16.5-gentoo

Für Cobaltserver komprimieren Sie das Kernel Abbild:

root #gzip -9v /boot/kernel-3.16.5-gentoo


Optional: initramfs bauen

In bestimmten Fällen ist es notwendig, ein initramfs (Ausgangsdateisystem im Arbeitsspeicher) zu bauen. Der häufigste Grund dafür ist, dass wichtige System-Verzeichnisse (wie /usr/ oder /var/) auf separaten Partitionen liegen. Diese Partitionen können mit Hilfe der Werkzeuge, die im initramfs Verfügbar sind, eingehängt werden.

Ohne initramfs besteht ein großes Risiko, dass das System nicht richtig bootet, da die Werkzeuge, die für das Einhängen der Dateisysteme verantwortlich sind, Informationen benötigen, die sich auf den einzuhängenden Dateisystemen befinden. Ein initramfs zieht die notwendigen Dateien in ein Archiv, welches genutzt werden kann nachdem der Kernel gebootet hat, aber noch bevor die Kontrolle an das Init-Tool übergeben wird. Skripte auf dem initramfs stellen dann sicher, dass die Partitionen richtig eingehängt sind, bevor das System mit dem Booten fortfährt.

Zur Installation eines initramfs installieren Sie zunächst das Paket sys-kernel/genkernel. Im Anschluss daran lassen Sie das Tool ein initramfs erzeugen:

root #emerge --ask sys-kernel/genkernel
root #genkernel --install initramfs

Um im initramfs Unterstützung für bestimmte Systeme zu aktivieren, wie LVM oder RAID, fügen Sie die entsprechenden Optionen an den genkernel Aufruf hinzu. Siehe genkernel --help für weitere Informationen. Im nächsten Beispiel aktivieren wir die Unterstützung für LVM und Software-RAID (mdadm)

root #genkernel --lvm --mdadm --install initramfs

Das initramfs wird in /boot/ gespeichert. Die resultierende Datei kann einfach durch Auflisten der mit initramfs beginnenden Dateien gefunden werden:

root #ls /boot/initramfs*

Fahren Sie nun beim Abschnitt Kernel-Module fort.

Alternative: genkernel verwenden

Wenn eine manuelle Konfiguration für Sie zu abschreckend aussieht, empfehlen wir die Nutzung von genkernel. Dies wird den Kernel automatisch konfigurieren und bauen.

genkernel konfiguriert den Kernel fast identisch zu der Art, wie ein Installations-CD Kernel konfiguriert wird. Wenn Sie genkernel verwenden, um einen Kernel zu bauen, wird die gesamte Hardware erst zur Bootzeit erkannt, genau so wie die Installations-CD das macht. Weil genkernel keine manuelle Kernel-Konfiguration benötigt, ist es eine ideale Lösung für jene Benutzer, denen unwohl beim Kompilieren ihres eigenen Kernels ist.

Schauen wir uns nun an, wie man genkernel verwendet. Installieren Sie als erstes das Paket sys-kernel/genkernel:

root #emerge --ask sys-kernel/genkernel

Editieren Sie die Datei /etc/fstab, so dass die Zeile, die als zweites Feld /boot/ beinhaltet, im ersten Feld auf das richtige Device zeigt. Wenn Sie dem Partitionierungs-Beispiel aus diesem Handbuch folgen, ist dieses Device wahrscheinlich /dev/sda1 mit einem ext2 Dateisystem. Dann würde der Eintrag in der Datei in etwa wie folgt aussehen:

root #nano -w /etc/fstab
DATEI /etc/fstabKonfiguration des /boot Einhängepunktes
/dev/sda1	/boot	ext2	defaults	0 2
Notiz
Bei der Gentoo Installation wird die Datei /etc/fstab später nochmals konfiguriert. Die /boot Einstellung wird aber bereits jetzt benötigt, da die Anwendung genkernel aus dieser Konfiguration liest.

Kompilieren Sie jetzt die Kernel-Quellen, indem Sie genkernel all ausführen. Seien Sie sich aber bewusst, dass der Vorgang einige Zeit in Anspruch nehmen wird, da genkernel einen Kernel kompiliert, der fast alle Hardware unterstützt!

Notiz
Wenn die Boot-Partition nicht ext2 oder ext3 als Dateisystem verwendet, könnte es notwendig sein, den Kernel manuell mit genkernel --menuconfig all zu konfigurieren. Hierbei müssen Sie Unterstützung für das Dateisystem der Boot-Partition direkt im Kernel (also nicht als Modul) hinzuzufügen. Benutzer von LVM2 werden vermutlich ebenfalls --lvm als Argument hinzufügen wollen.
root #genkernel all

Wenn genkernel fertig ist, wird ein Kernel, ein voller Satz Module und ein initial ram filesystem (initramfs) erstellt worden sein. Wir verwenden den Kernel und die initrd bei der Konfiguration des Boot-Loader später in dieser Anleitung. Schreiben Sie sich die Namen des Kernels und der initrd auf, da Sie diese Information benötigen, wenn die Boot-Loader Konfigurationsdatei bearbeitet wird. Die initrd wird sofort nach dem Booten gestartet, um die automatische Hardware-Erkennung durchzuführen (wie bei der Installations-CD). Danach wird das "richtige" System gestartet.

root #ls /boot/kernel* /boot/initramfs*

Kernel-Module

Konfigurieren der Module

Notiz
Beim Booten werden folgende Kernel-Module automatisch geladen:
  • Kernel-Module für Hardware, die erkannt wird (über udev)
  • Kernel-Module, die explizit angegeben wurden.
Exotische Hardware wird manchmal nicht automatisch erkannt. In diesem Fall ist es notwendig, die erforderlichen Kernel-Module explizit anzugeben. Es schadet nicht, die Kernel-Module, die von udev automatisch geladen werden, zusätzlich explizit anzugeben.

Konfigurieren Sie die Module, die beim Booten automatisch geladen werden sollen, in /etc/modules-load.d/*.conf Dateien. In jeder Zeile wird ein Modul angegeben. Zusätzliche Optionen für die Module sollten in /etc/modprobe.d/*.conf Dateien konfiguriert werden.

Um alle verfügbaren Module anzuzeigen, können Sie den folgenden find Befehl ausführen. Vergessen Sie nicht, "<Kernelversion>" mit der Version des Kernels zu ersetzen, den Sie gerade kompiliert haben:

root #find /lib/modules/<Kernelversion>/ -type f -iname '*.o' -or -iname '*.ko' | less

Um beispielsweise automatisch das Modul 3c59x.ko zu laden (ein Treiber für eine bestimmte 3Com Netzwerkkarten-Familie), editieren Sie die Datei /etc/modules-load.d/network.conf und fügen Sie den Modulnamen ein. Der genaue Dateiname in /etc/modules-load.d/ ist für den Loader unwichtig.

root #mkdir -p /etc/modules-load.d
root #nano -w /etc/modules-load.d/network.conf
DATEI /etc/modules-load.d/network.confLaden des 3c59x Moduls erzwingen
3c59x

Setzten Sie die Installation mit der Konfiguration des Systems fort.

Optional: Firmware installieren

Einige Treiber benötigen die Installation von zusätzlicher Firmware auf dem System, bevor sie funktionieren. Dies ist häufig bei Netzwerkkarten, und insbesondere bei WLAN Interfaces der Fall. Auch moderne Video-Chips von Herstellern wie AMD, NVidia und Intel benötigen häufig externe Firmware-Dateien, selbst oder gerade wenn sie mit Open-Source Treibern angesteuert werden. Die meiste Firmware befindet sich im Paket sys-kernel/linux-firmware:

root #emerge --ask sys-kernel/linux-firmware




Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎polski • ‎русский • ‎українська • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
MIPS Handbuch
Installation
Über die Installation
Auswahl des Mediums
Konfiguration des Netzwerks
Vorbereiten der Festplatte(n)
Installation des Stage Archivs
Installation des Basissystems
Konfiguration des Kernels
Konfiguration des Systems
Installation der Tools
Konfiguration des Bootloaders
Abschluss
Arbeiten mit Gentoo
Portage-Einführung
USE-Flags
Portage-Features
Initskript-System
Umgebungsvariablen
Arbeiten mit Portage
Dateien und Verzeichnisse
Variablen
Mischen von Softwarezweigen
Zusätzliche Tools
Eigener Portage-Tree
Erweiterte Portage-Features
Netzwerk-Konfiguration
Zu Beginn
Fortgeschrittene Konfiguration
Modulare Vernetzung
Drahtlose Netzwerke
Funktionalität hinzufügen
Dynamisches Management


Dateisystem-Konfiguration

Über fstab

Unter Linux müssen alle Partitionen, die im System genutzt werden, in /etc/fstab aufgelistet werden. Diese Datei beinhaltet die Mountpunkte ("Einhängepunkte") dieser Partitionen (wo sie im Dateisystem erscheinen), wie sie eingehängt werden sollen und mit welchen speziellen Optionen sie eingehängt werden sollen (automatisch einhängen oder nicht, dürfen Benutzer sie einhängen, etc.)

fstab erstellen

Die Datei /etc/fstab verwendet eine tabellenartige Syntax. Jede Zeile besteht aus sechs Feldern, die jeweils durch Leerräume (Leerzeichen, Tabulatoren oder beides gemischt) getrennt sind. Jedes Feld hat seine eigene Bedeutung:

  1. Das erste Feld enthält eine Block-Gerätedatei oder ein Remote-Dateisystem, die/das eingehängt werden soll. Block-Gerätedateien können über mehrere verschiedene Arten angegeben werden: u.a. über den Dateinamen des Gerätedatei, über Dateisystem Labels und UUIDs oder über Partition Labels und UUIDs.
  2. Das zweite Feld definiert den Einhängepunkt, an dem die Partition eingehängt werden soll.
  3. Das dritte Feld enthält den Typ des Dateisystem (ext2, etxt3, ...)
  4. Im vierten Feld stehen die Einhänge-Optionen, die von mount genutzt werden, wenn es die Partition eingehängt. Da jedes Dateisystem seine eigenen Optionen hat, empfiehlt sich ein Blick in die Manpage (man mount), wo sich eine vollständige Liste findet. Mehrere Einhänge-Optionen werden mit Kommata getrennt.
  5. Das fünfte Feld wird von dump verwendet, um herauszufinden ob die Partition in einem Dump-Backup berücksichtigt werden soll. Dieser Eintrag kann üblicherweise auf 0 (null) belassen werden.
  6. Das sechste Feld wird von fsck verwendet, um die Reihenfolge festzulegen, in der Dateisysteme nach einem unsauberen Neustart überprüft werden. Für das root-Dateisystem (/) sollte hier 1 stehen, für alle anderen Dateisysteme 2 (oder 0, wenn eine Dateisystemprüfung nicht nötig ist.)
Wichtig
Die bei der Installation von Gentoo Linux installierte Datei /etc/fstab ist keine gültige fstab-Datei, sondern eine Vorlage, die von Ihnen ausgefüllt werden muss.
root #nano -w /etc/fstab

Im Rest dieses Kapitels verwenden wir Block-Gerätedateien /dev/sd* zur Auswahl von Partitionen.

Dateisystem Labels and UUIDs

Unabhängig davon, ob Sie MBR (BIOS) oder GPT Partitionstabellen verwenden, können Sie Dateisystem Labels und Dateisystem UUIDs nutzen. Diese Attribute können in /etc/fstab als Alternative zu den bisherigen Block-Gerätedateien (/dev/sd*) angegeben werden. Das Kommando blkid zeigt Ihnen die LABELs und UUIDs der Dateisysteme auf Ihrem System an. In der Datei /etc/fstab geben Sie diese mit dem Prefix "LABEL=" bzw. "UUID=" an. Anführungszeichen werden - im Gegensatz zu der Ausgabe von blkid - nicht verwendet.

root #blkid
Warnung
Wenn ein Dateisystem innerhalb einer Partition neu erstellt oder gelöscht wird, ändern sich die Dateisystem Labels und UUIDs - oder sie verschwinden ganz.

Um die Eindeutigkeit zu gewährleisten, sollten Anwender, die eine MBR Partitionstabelle verwenden, besser Dateisystem UUIDs als Dateisystem Labels in /etc/fstab verwenden.

Partition Labels and UUIDs

Anwender, die eine GPT Partitionstabelle verwenden, haben eine 'robustere' Möglichkeit, um Partitionen in /etc/fstab anzugeben: Partition Labels und Partition UUIDs. Diese kennzeichnen Partitionen selbst, unabhängig von deren Inhalt oder dem Dateisystem, das dort angelegt ist. Sie ändern sich deshalb auch nicht, wenn der Inhalt der Partition gelöscht wird oder ein neues Dateisystem erstellt wird. Das Kommando blkid zeigt Ihnen die PARTLABELs und PARTUUIDs der Partitionen auf Ihrem System an. In der Datei /etc/fstab geben Sie diese mit dem Prefix "PARTLABEL=" bzw. "PARTUUID=" an. Anführungszeichen werden - im Gegensatz zu der Ausgabe von blkid - nicht verwendet.

root #blkid

Der Name eines Block-Geräts hängt von mehreren Faktoren ab, u.a. von der Reihenfolge, in der der Kernel die Block-Geräte im frühen Boot-Prozess erkennt. Bei Systemen, die häufig gebootet werden und bei denen regelmäßig SATA Block-Geräte entfernt oder hinzugefügt werden, können sich die Namen der Block-Geräte nach einem Neustart ändern. Es ist deshalb riskant, die älteren Block-Gerätedateien (/dev/sd*N) zur Angabe von Partitionen in fstab zu verwenden. Wenn Sie stattdessen Partition UUIDs verwenden, ist garantiert, dass Linux das gewünschte Dateisystem verwendet - selbst wenn das Dateisystem später geändert wird.

Nichtsdestotrotz ist die Verwendung der hergebrachten Block-Gerätedateien eine einfache, geradlinige und für die meisten Anwender sinnvolle Methode. Wenn Sie einen komplexen Server mit vielen Festplatten haben oder wenn Sie die Hardware ihres Systems häufiger ändern werden, sollten Sie über die Verwendung von Partition UUIDs nachdenken.


Schauen wir uns an, wie man die /boot/-Partition in fstab konfigurieren würde. Das folgende Beispiel sollte so angepasst werden, dass es zu der gewählten Partitionierung Ihres Systems passt. Bei der in unserem mips Handbuch gewählten Partitionierung ist /boot/ die /dev/sda1 Partition, mit einem ext2 Dateisystem. Das Dateisystem soll beim Booten überprüft werden. Es ergibt sich:

DATEI /etc/fstabBeispiel: eine /boot Zeile für eine /etc/fstab Datei
/dev/sda1   /boot     ext2    defaults        0 2

Einige Anwender möchten aus Sicherheitsgründen nicht, dass ihre /boot/ Partition automatisch eingehängt wird. Diese Anwender können defaults durch noauto ersetzen. Dies bedeutet aber auch, dass diese Anwender die Partition jedes Mal von Hand einhängen müssen, wenn Sie sie nutzen wollen.

Fügen Sie weitere Zeilen hinzu, so dass alle gewünschten Dateisysteme eingehängt werden. Wenn Sie ein CD-ROM Laufwerk haben, fügen Sie auch eine Regel hierfür hinzu.

Hier ist ein Beispiel für eine vollständige /etc/fstab Datei:


DATEI /etc/fstabBeispiel: eine vollständige /etc/fstab Datei
/dev/sda1   /boot        ext2    defaults,noatime     0 2
/dev/sda10   none         swap    sw                   0 0
/dev/sda5   /            ext4    noatime              0 1
  
/dev/cdrom  /mnt/cdrom   auto    noauto,user          0 0

When auto im dritten Feld verwendet wird, "rät" mount den Typ des Dateisystems beim Einhängen. Dies wird empfohlen für Wechselmedien, da sie unterschiedliche Typen von Dateisystemen haben können. Die Option user im vierten Feld ermöglicht es nicht-root Usern, CDs einzuhängen.

Um die Performance zu erhöhen, können die meisten Anwender die Option noatime setzen. Dadurch wird in den Verwaltungsdaten von Dateien nicht mehr protokolliert, wann zum letzten Mal lesend auf sie zugegriffen wurde. Diese Option wird bei der Verwendung von SSDs auch deshalb empfohlen, weil sie die Anzahl der Schreibzugriffe reduziert.

Überprüfen Sie die Datei /etc/fstab noch einmal, speichern Sie sie und verlassen Sie den Editor.

Netzwerk-Konfiguration

Host- und Domänen-Konfiguration

Eine der Entscheidungen, die Benutzer treffen müssen, ist der Name des PCs. Auf den ersten Blick scheint dies einfach zu sein, aber viele Benutzer haben Schwierigkeiten, einen passenden Namen für ihren Linux-PC zu finden. Um diesen Prozess zu beschleunigen, sei darauf hingewiesen, dass der Name später wieder geändert werden kann. In den folgenden Beispielen wird der Hostname "tux" in der Domäne "homenetwork" verwendet.

root #nano -w /etc/conf.d/hostname
# Die Variable "hostname" auf den gewählten Hostnamen setzen
hostname="tux"

Wenn ein Domänenname benötigt wird, setzen Sie diesen in /etc/conf.d/net. Dies ist nur nötig, wenn Ihr Provider oder Netzwerkadministrator dies verlangt, oder wenn das Netzwerk einen DNS-Server besitzt, aber keinen DHCP-Server. Sie können DNS oder Domänennamen ignorieren, wenn Ihr System DHCP für die Zuweisung dynamischer IP-Adressen und Netzwerkkonfiguration verwendet wird.

Notiz
Die Datei /etc/conf.d/net wird nicht mitgeliefert, Sie müssen sie daher erstellen.
root #nano -w /etc/conf.d/net
# Setzen Sie die dns_domain-Variable auf Ihren Domainnamen
dns_domain_lo="homenetwork"
Notiz
Wenn Sie sich dafür entscheiden, keinen Domänennamen zu setzen, können Sie die "This is hostname.(none)" Nachrichten am Anmeldebildschirm loswerden, indem Sie /etc/issue editieren. Entfernen Sie einfach den String .\O aus dieser Datei.

Wenn eine NIS Domäne benötigt wird (Anwender, die unsicher sind, benötigen keine), definieren Sie eine:

root #nano -w /etc/conf.d/net
# Set the nis_domain_lo variable to the selected NIS domain name
nis_domain_lo="my-nisdomain"
Notiz
Weitere Informationen zur Konfiguration von DNS und NIS finden Sie in den Beispielen in /usr/share/doc/netifrc-*/net.example.bz2. Die Dateien können mit Hilfe des Programms bzless gelesen werden. Es könnte auch nützlich sein, das Paket net-dns/openresolv zu installieren, das bei dem Management von DNS/NIS hilft.

Konfigurieren der Netzwerk-Interfaces

Bereits zu Beginn der Installation von Gentoo Linux wurde das Netzwerk konfiguriert. Diese Konfiguration betraf jedoch das von der Installations-CD gebootete System - und nicht das neu installierte System. Wir werden jetzt die Netzwerk-Konfiguration für Ihr neu installiertes Linux-System erstellen.

Notiz
Weitere Informationen über Netzwerke, insbesondere auch über fortgeschrittene Themen wie Bonding, Bridges, 802.1Q VLANs oder WLAN, finden Sie in dem Abschnitt "Gentoo Netzwerk-Konfiguration".

Die Netzwerk-Konfiguration wird gespeichert in /etc/conf.d/net. Die Syntax ist unkompliziert, aber vielleicht etwas un-intuitiv. Aber keine Angst - wir werden alles in Ruhe erklären. Ein gut dokumentiertes Beispiel mit mehreren verschiedenen Konfigurationen finden Sie unter /usr/share/doc/netifrc-*/net.example.bz2.

Installieren Sie zuerst das Paket net-misc/netifrc:

root #emerge --ask --noreplace net-misc/netifrc

Standardmäßig wird DHCP verwendet. Damit DHCP funktioniert, muss ein DHCP-Client installiert werden. Dies wird später im Abschnitt "Einen DHCP Client installieren" beschrieben.

Wenn Sie kein DHCP verwenden wollen (statische IP-Adressen) oder wenn Sie spezielle DHCP-Optionen benötigen, dann editieren Sie jetzt die Datei /etc/conf.d/net:

root #nano -w /etc/conf.d/net

Definieren Sie IP-Adresse und Routing in den beiden Variablen config_eth0 und routes_eth0.

Notiz
Wir gehen in dieser Anleitung davon aus, dass das Netzwerk-Interface "eth0" heißt. Bei Ihnen heißt das Netzwerk-Interface möglicherweise anders. Verwenden Sie im Folgenden statt "eth0" immer den Namen Ihres Netzwerk-Interfaces. Der Name des Netzwerk-Interfaces hängt ab vom gebooteten System und den Kernel-Optionen. Da Sie noch nicht von dem neu installierten System gebootet haben, können Sie den Namen des Netzwerk-Interfaces noch nicht wissen. Die Wahrscheinlichkeit ist jedoch hoch, dass es genauso heißen wird, wie in Ihrem jetzigen System, das von dem Installationsmedium gebootet wurde.
DATEI /etc/conf.d/netKonfiguration einer statischen IP-Adresse
config_eth0="192.168.0.2 netmask 255.255.255.0 brd 192.168.0.255"
routes_eth0="default via 192.168.0.1"

Um DHCP zu verwenden, setzen Sie config_eth0:

DATEI /etc/conf.d/netKonfiguration von DHCP
config_eth0="dhcp"

Eine Liste aller möglichen Optionen finden Sie in /usr/share/doc/netifrc-*/net.example.bz2. Bitte lesen Sie auch die DHCP-Client man page, wenn besondere DHCP-Optionen gesetzt werden müssen.

Wenn das System mehrere Netzwerk-Interfaces hat, wiederholen Sie bitte die oben beschriebenen Schritte für alle Netzwerk-Interfaces (config_eth1, config_eth2 usw.) - falls diese Interfaces beim Booten initialisiert und aktiviert werden sollen.

Speichern Sie die Konfigurations-Datei und verlassen Sie den Editor.

Automatischer Start der Netzwerk-Interfaces beim Booten

Damit die Netzwerk-Interfaces beim Booten konfiguriert und aktiviert werden, müssen sie zum Runlevel 'default' hinzugefügt werden.

root #cd /etc/init.d
root #ln -s net.lo net.eth0
root #rc-update add net.eth0 default

Wenn Ihr System mehrere Netzwerk-Interfaces hat, muss der vorherige Schritt für alle Netzwerk-Interfaces, die beim Booten konfiguriert und aktiviert werden sollen, wiederholt werden.

Wenn Sie nach dem Booten herausfinden sollten, dass der gewählte Name für das oder die Netzwerk-Interfaces verkehrt ist, führen Sie die folgenden Anweisungen aus, um das Problem zu beheben:

  1. Editieren Sie die Datei /etc/conf.d/net und ersetzen Sie den verkehrten Interface-Namen durch den korrekten Namen (beispielsweise enp3s0 statt eth0).
  2. Erstellen Sie den korrekten symbolischen Link (beispielsweise /etc/init.d/net.enp3s0).
  3. Entfernen Sie den alten (fehlerhaften) Link (rm /etc/init.d/net.eth0).
  4. Fügen Sie das neue Interface zum Runlevel 'default' hinzu
  5. Entfernen Sie das alte Interface vom Runlevel 'default': rc-update del net.eth0 default.

Die hosts Datei

Bitte editieren Sie die Datei /etc/hosts. Diese Datei muss auf jeden Fall einen korrekten Eintrag zu localhost enthalten. Weiterhin können Sie IP-Adressen und Hostnamen von wichtigen Hosts in ihrem eigenen Netzwerk eintragen. Letzteres ist jedoch nur notwendig, wenn Ihr Nameserver diese Informationen nicht liefern kann, wenn Sie gar keinen Nameserver verwenden, oder wenn Sie eine Namensauflösung für die Zeiten benötigen, in denen der Nameserver nicht verfügbar ist (z.B. beim Booten oder bei Netzstörungen).

root #nano -w /etc/hosts
DATEI /etc/hostsZuordnung zwischen IP-Adressen und Hostnamen für lokale Namensauflösung
# This defines the current system and must be set
127.0.0.1     tux.homenetwork tux localhost
  
# Optional definition of extra systems on the network
192.168.0.5   jenny.homenetwork jenny
192.168.0.6   benny.homenetwork benny

Speichern Sie die Datei und beenden Sie den Editor.

Optional: PCMCIA zum Laufen bekommen

Anwender, die PCMCIA Hardware verwenden, sollten das Paket sys-apps/pcmciautils installieren.

root #emerge --ask sys-apps/pcmciautils

System-Konfiguration

Root Passwort

Setzen Sie das root-Passwort mit dem passwd Kommando:

root #passwd

Der Linux User 'root' ist sehr mächtig! Wählen Sie deshalb bitte ein sicheres Passwort. Später werden wir einen "gewöhnlichen" User mit eingeschränkten Rechten anlegen, unter dem Sie alle normalen täglichen Arbeiten verrichten können.

Init- and Boot-Konfiguration

Wenn Sie Gentoo mit dem Init-System OpenRC verwenden, werden die Dienste, die beim Booten oder Herunterfahren des Systems gestartet bzw. gestoppt werden, in der Datei /etc/rc.conf konfiguriert. Öffnen Sie diese Datei mit einem Editor, und erfreuen Sie sich an den vielen Kommentaren in der Datei. Überprüfen Sie alle Einstellungen und ändern Sie sie, falls gewünscht oder erforderlich.

root #nano -w /etc/rc.conf

Editieren Sie als nächstes die Datei /etc/conf.d/keymaps und konfigurieren Sie Ihre Tastatur.

root #nano -w /etc/conf.d/keymaps

Seien Sie vorsichtig bei der keymap Variable. Wenn Sie die falsche Tastatur konfigurieren, erhalten Sie merkwürdige Ergebnisse, wenn sie Texte auf der Tastatur tippen.

Editieren Sie zum Schluss die Datei /etc/conf.d/hwclock und konfigurieren Sie Ihre Hardware-Uhr.

root #nano -w /etc/conf.d/hwclock

Wenn die Hardware-Uhr nicht unter der Zeitzone UTC laufen soll, sollten Sie clock="local" in die Datei schreiben. Ansonsten kann es zu Zeitfehlern oder -sprüngen kommen.




Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎polski • ‎русский • ‎українська • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
MIPS Handbuch
Installation
Über die Installation
Auswahl des Mediums
Konfiguration des Netzwerks
Vorbereiten der Festplatte(n)
Installation des Stage Archivs
Installation des Basissystems
Konfiguration des Kernels
Konfiguration des Systems
Installation der Tools
Konfiguration des Bootloaders
Abschluss
Arbeiten mit Gentoo
Portage-Einführung
USE-Flags
Portage-Features
Initskript-System
Umgebungsvariablen
Arbeiten mit Portage
Dateien und Verzeichnisse
Variablen
Mischen von Softwarezweigen
Zusätzliche Tools
Eigener Portage-Tree
Erweiterte Portage-Features
Netzwerk-Konfiguration
Zu Beginn
Fortgeschrittene Konfiguration
Modulare Vernetzung
Drahtlose Netzwerke
Funktionalität hinzufügen
Dynamisches Management


Syslog Daemon

Einige Tools fehlen in dem Stage Tar-Archiv, weil es mehrere Pakete gibt, die die gleiche Funktionalität bereitstellen. Der Anwender kann wählen, welches dieser Pakete er installieren möchte.

Das erste Tool, bei dem eine Auswahl getroffen werden muss, ist der Syslog Daemon. UNIX und Linux bieten hervorragende Unterstützung für Logging. Falls notwendig, kann alles, was auf dem System passiert, in Log-Dateien protokolliert werden. Hierfür muss ein Syslog Daemon installiert werden, der die Protokoll-Nachrichten empfängt, sie ggf. filtert, und in Dateien schreibt - oder auf eine andere Art speichert oder weiterleitet.

Gentoo bietet verschiedene Syslog Daemons, unter anderem:

  • app-admin/sysklogd - Das Paket beinhaltet das traditionelle Set von Syslog Diensten. Die mitgelieferte Standard-Konfiguration funktioniert ohne zusätzliche Konfigurationsarbeiten. Deshalb ist dieses Paket eine gute Wahl für Anfänger.
  • app-admin/syslog-ng - Ein fortgeschrittener Syslog Daemon, der für fortgeschrittene Anwender gedacht ist, die das Logging feiner steuern und zusätzliche Funktionen nutzen wollen. Er benötigt zusätzliche Konfigurationsaufwand, wenn in mehr als eine Datei protokolliert werden soll.
  • app-admin/metalog - Ein hochgradig konfigurierbarer Syslog Daemon.

Über Portage sind noch weitere Syslog Daemons verfügbar - die Anzahl der verfügbaren Pakete wächst ständig.

Tip
Wenn sysklogd oder syslog-ng verwendet werden, wird empfohlen, später auch das Paket logrotate zu installieren, weil diese beiden Syslog Daemons keine Funktionen zum Rotieren und Löschen von Log-Dateien enthalten.
Tip
systemd enthält ein eigenes Logging System namens "journal". Auf systemd Systemen kann optional ein zusätzlicher Syslog Daemon installiert werden. Dieser muss so konfiguriert werden, dass er Nachrichten vom systemd journal liest.

Wenn Sie einen Syslog Daemon ausgewählt haben, installieren Sie ihn mit emerge und fügen Sie ihn mit rc-update zum Runlevel "default" hinzu. Das folgende Beispiel installiert app-admin/sysklogd:

root #emerge --ask app-admin/sysklogd
root #rc-update add sysklogd default

Optional: Cron Daemon

Die Installation eines Cron Daemons ist optional und wird nicht auf jedem System benötigt. Auf den meisten Systemen ist die Installation eines Cron Daemons jedoch sinnvoll.

Ein Cron Daemon führt Kommandos und Programme zu vordefinierten Zeiten aus. Er kann Kommandos oder Programme auch regelmäßig ausführen (beispielsweise täglich, wöchentlich oder monatlich).

Gentoo bietet verschiedene Cron Daemons an, unter anderem sys-process/bcron, sys-process/dcron, sys-process/fcron und sys-process/cronie. Die Installation erfolgt ähnlich wie bei dem Syslog Daemon. Das folgende Beispiel installiert sys-process/cronie:

root #emerge --ask sys-process/cronie
root #rc-update add cronie default

Wenn dcron or fcron verwendet werden, muss ein zusätzlicher Initialisierungs-Befehl ausgeführt werden:

root #crontab /etc/crontab

Optional: Datei-Index

Mit Hilfe des Pakets sys-apps/mlocate kann man einen Index des Dateisystems erstellen und schnell nach Dateien suchen.

root #emerge --ask sys-apps/mlocate

Optional: Remote Zugriff

Wenn Sie sich von Remote Systemen über SSH bei Ihrem neu installierten System anmelden wollen, sollten Sie sshd zum Runlevel "default" hinzufügen:

root #rc-update add sshd default

Wenn Sie sich über die serielle Schnittstelle bei Ihrem neu installierten System anmelden wollen, sollten Sie das Kommentar-Zeichen bei den Einträgen zur seriellen Konsole in /etc/inittab entfernen:

root #nano -w /etc/inittab
# SERIAL CONSOLES
s0:12345:respawn:/sbin/agetty 9600 ttyS0 vt100
s1:12345:respawn:/sbin/agetty 9600 ttyS1 vt100

Dateisystem Tools

Es ist erforderlich, die zu den genutzten Dateisystemen gehörenden Dateisystem-Utilities zu installieren (diese werden benötigt für Wartungsaufgaben wie Überprüfung der Dateisysteme, um neue Dateisystem zu erstellen, usw.). Anmerkung: die Dateisystem-Utilities für die Dateisysteme ext2, ext3, und ext4 sind bereits installiert, weil sie zu dem @system set gehören.

Die folgende Tabelle zeigt, welche Pakete installiert werden müssen, wenn Sie das zugehörige Dateisystem verwenden:

Dateisystem Paket
Ext2, 3, and 4 sys-fs/e2fsprogs
XFS sys-fs/xfsprogs
ReiserFS sys-fs/reiserfsprogs
JFS sys-fs/jfsutils
VFAT (FAT32, ...) sys-fs/dosfstools
Btrfs sys-fs/btrfs-progs
Tip
Weitere Informationen zu Dateisystemen in Gentoo finden Sie im Artikel zu Dateisystemen.

Netzwerk Tools

Wenn es keinen Bedarf für zusätzliche Netzwerk-Tools gibt, können Sie direkt zum Kapitel Konfiguration des Bootloaders springen.

Einen DHCP-Client installieren

Wichtig
Die Installation eines DHCP-Clients ist zwar optional, aber die überwiegende Mehrheit der Anwender benötigt einen DHCP-Client. Bitte installieren jetzt Sie einen DHCP-Client. Wenn dieser Schritt übersprungen wird, kann es passieren, dass Ihr System nach einem Neustart keine Verbindung mehr zu Ihrem Netzwerk aufbauen kann. In diesem Fall werden Sie vermutlich nicht in der Lage sein, einen DHCP-Client nachträglich zu installieren.

Damit Ihr System in der Lage ist, mit Hilfe der netifrc-Skripte automatisch eine IP-Adresse für Ihr(e) Netzwerk-Interface(s) zu erhalten, ist es notwendig, einen DHCP-Client zu installieren. Wir empfehlen die Installation des Pakets net-misc/dhcpcd, obwohl über das Gentoo ebuild Repository auch viele andere DHCP-Clients verfügbar sind:

root #emerge --ask net-misc/dhcpcd

Weitere Informationen zu dhcpcd finden Sie in dem dhcpcd Artikel.

Optional: Einen PPPoE-Client installieren

Wenn PPP genutzt werden soll, um eine Verbindung zum Internet aufzubauen, sollten Sie das Paket net-dialup/ppp installieren.

root #emerge --ask net-dialup/ppp

Optional: WLAN Tools installieren

Wenn das System mit WLANs (drahtlosen lokalen Netzwerken) verbunden werden soll, sollten Sie das Paket net-wireless/iw installieren für offene oder WEP Netze und/oder das Paket net-wireless/wpa_supplicant für WPA oder WPA2 Netze. iw ist auch ein nützliches Tools für Diagnose-Zwecke und zum Scannen von WLANs.

root #emerge --ask net-wireless/iw net-wireless/wpa_supplicant

Als nächstes folgt das Kapitel Konfigurieren des Bootloaders.




Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎polski • ‎русский • ‎українська • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
MIPS Handbuch
Installation
Über die Installation
Auswahl des Mediums
Konfiguration des Netzwerks
Vorbereiten der Festplatte(n)
Installation des Stage Archivs
Installation des Basissystems
Konfiguration des Kernels
Konfiguration des Systems
Installation der Tools
Konfiguration des Bootloaders
Abschluss
Arbeiten mit Gentoo
Portage-Einführung
USE-Flags
Portage-Features
Initskript-System
Umgebungsvariablen
Arbeiten mit Portage
Dateien und Verzeichnisse
Variablen
Mischen von Softwarezweigen
Zusätzliche Tools
Eigener Portage-Tree
Erweiterte Portage-Features
Netzwerk-Konfiguration
Zu Beginn
Fortgeschrittene Konfiguration
Modulare Vernetzung
Drahtlose Netzwerke
Funktionalität hinzufügen
Dynamisches Management



arcload für Silicon Graphics Maschinen

arcload wurde für Maschinen geschrieben die einen 64-Bit Kernel benötigen und deshalb nicht arcboot verwenden können (welches nicht einfach als 64-Bit Binärdatei kompiliert werden kann). Es kommt auch mit Besonderheiten zurecht die entstehen, wenn man einen Kernel direkt aus dem Volume-Header lädt. Fahren wir mit der Installation fort:

root #emerge arcload dvhtool

Wenn das abgeschlossen ist, finden Sie die arcload Binärdatei in /usr/lib/arcload/. Es gibt zwei Dateien:

  • sashARCS: Die 32-Bit Binärdatei für Indy, Indigo2 (R4k), Challenge S und O2 Systeme
  • sash64: Die 64-Bit Binärdatei für Octane/Octane2, Origin 200/2000 und Indigo2 Impact Systeme

Verwenden Sie dvhtool um die für das System geeignete Binärdatei in den Volume-Header zu installieren:

Für Indy/Indigo2/Challenge S/O2 Benutzer:

root #dvhtool --unix-to-vh /usr/lib/arcload/sashARCS sashARCS

Für Indigo2 Impact/Octane/Octane2/Origin 200/Origin 2000 Benutzer:

root #dvhtool --unix-to-vh /usr/lib/arcload/sash64 sash64
Notiz
Der Name sashARCS oder sash64 muss nicht unbedingt verwendet werden, es sei denn Sie installieren auf den Volume-Header einer bootfähigen CD. Zum normalen Booten von der Festplatte, kann es beliebig benannt werden.

Verwenden Sie jetzt einfach dvhtool um zu prüfen, dass sie sich im Volume-Header befindet:

root #dvhtool --print-volume-directory
----- directory entries -----
Entry #0, name "sash64", start 4, bytes 55859

Die Datei arc.cf hat eine C-ähnliche Syntax. Für vollständige Details wie man sie konfiguriert, schauen Sie sich bitte die arcload Seite im Linux/MIPS Wiki an. Die Kurzfassung: Definieren Sie mit Hilfe der OSLoadFilename Variable eine Reihe von Optionen die beim Booten aktiviert und deaktiviert werden.

DATEI arc.cfBeispiel arc.cf
# ARCLoad Configuration
  
# Some default settings...
append  "root=/dev/sda5";
append  "ro";
append  "console=ttyS0,9600";
  
# Our main definition. ip28 may be changed if you wish.
ip28 {
        # Definition for a "working" kernel
        # Select this by setting OSLoadFilename="ip28(working)"
        working {
                description     "SGI Indigo2 Impact R10000\n\r";
                image system    "/working";
        }
  
        # Definition for a "new" kernel
        # Select this by setting OSLoadFilename="ip28(new)"
        new {
                description     "SGI Indigo2 Impact R10000 - Testing Kernel\n\r";
                image system    "/new";
        }
  
        # For debugging a kernel
        # Select this by setting OSLoadFilename="ip28(working,debug)"
        # or OSLoadFilename="ip28(new,debug)"
        debug {
                description     "Debug console";
                append          "init=/bin/bash";
        }
}

Beginnend mit arcload-0.5 können arc.cf und Kernel entweder im Volume-Header oder auf einer Partition gespeichert sein. Um diese neue Eigenschaft zu nutzen, können Sie die Dateien in der /boot/ Partition ablegen (oder / wenn es keine extra Boot Partition gibt). arcload verwendet den Dateisystemtreiber-Code des beliebten grub Bootloader und unterstützt somit den gleichen Umfang an Dateisystemen.

root #dvhtool --unix-to-vh arc.cf arc.cf
root #dvhtool --unix-to-vh /usr/src/linux/vmlinux new

CoLo für Cobalt MicroServer

CoLo installieren

Cobalt Server haben eine viel weniger leistungsfähige Firmware auf dem Chip installiert. Das Cobalt BOOTROM ist im Vergleich zum SGI PROM primitiv und weist eine Reihe erheblicher Limitierungen auf.

  • Es besteht eine (ungefähr) 675 KB Größenlimitierung des Kernels. Die aktuelle Größe von Linux 2.4 macht es nahezu unmöglich einen Kernel dieser Größe zu erzeugen. Linux 2.6 und 3.x stehen vollkommen außer Frage.
  • 64-Bit Kernel werden von der Original-Firmware nicht unterstützt (obwohl diese momentan sehr experimentell auf Cobalt Maschinen sind)
  • Die Shell ist im günstigsten Fall rudimentär

Um diese Limitierungen zu überwinden wurde eine alternative Firmware genannt CoLo (Cobalt Loader) entwickelt. Dies ist ein BOOTROM Abbild das entweder auf den Chip im Cobalt Server geflasht, oder von der existierenden Firmware geladen werden kann.

Notiz
Dieses Handbuch wird durch die Einrichtung von CoLo führen, damit es durch die Original-Firmware geladen wird. Dies ist der einzig wirklich sichere und empfohlene Weg um CoLo einzurichten.
Warnung
Wenn gewünscht kann dies in den Server geflasht werden um die Original-Firmware vollkommen zu ersetzen -- Sie sind in dieser Bestrebung jedoch völlig auf sich alleine gestellt. Falls etwas schief läuft entfernen sie das BOOTROM physikalisch und flashen Sie es erneut mit der Original-Firmware. Wenn das für Sie abschreckend klingt, flashen Sie die Maschine NICHT. Wir übernehmen keinerlei Verantwortung für das was passieren kann, wenn Sie diesen Ratschlag ignorieren.

Lassen Sie uns mit der Installation von CoLo weitermachen. Zuerst emergen Sie das Paket.

root #emerge --ask sys-boot/colo

Nach der Installation werfen Sie einen Blick in das Verzeichnis /usr/lib/colo/. Hier liegen die folgenden zwei Dateien:

  • colo-chain.elf (der "Kernel" der von der Original-Firmware geladen wird)
  • colo-rom-image.bin (ein ROM Abbild zum Flashen auf das BOOTROM)

Wir beginnen mit dem Mounten von /boot/ und dem Ablegen einer komprimierten Kopie von colo-chain.elf in /boot/, wo das System es erwartet.

root #gzip -9vc /usr/lib/colo/colo-chain.elf > /boot/vmlinux.gz

CoLo konfigurieren

Wenn das System bootet wird es CoLo laden, welches ein Menü auf dem LCD ausspuckt. Die erste Option (und die Voreinstellung, die nach ca. 5 Sekunden übernommen wird) ist das Booten von der Festplatte. Das System versucht dann die erste Linux Partition die es findet zu mounten und anschließend das Script default.colo zu starten. Die Syntax ist vollständig in der CoLo Dokumentation beschrieben (werfen Sie einen Blick auf /usr/share/doc/colo-X.YY/README.shell.gz -- wobei X.YY die installierte Versionsnummer ist) und sehr einfach.

Notiz
Nur ein Tipp: Bei der Installation eines Kernels ist es empfehlenswert zwei Kernel-Abbilder zu erzeugen: kernel.gz.working -- ein bekanntermaßen funktionierender Kernel und kernel.gz.new -- der Kernel der gerade kompiliert wurde. Es ist möglich symbolische Links zu nutzen, um auf die aktuellen "...new" und "...working" Kernel zu verweisen. Oder benennen Sie die Kernel-Abbilder einfach entsprechend um.
DATEI default.coloCoLo Beispielkonfiguration
#:CoLo:#
mount hda1
load /kernel.gz.working
execute root=/dev/sda5 ro console=ttyS0,115200
Notiz
CoLo verweigert das Laden eines Skriptes, das nicht mit der Zeile #:CoLo:# beginnt. Sie können es als Äquivalent von #!/bin/sh in Shell Skripten ansehen.

Es ist ebenfalls möglich eine Farge nach dem zu bootenden Kernel und der Konfiguration mit einem Standard-Timeout zu stellen. Die nachfolgende Konfiguration tut genau dies: Die fragt den Benutzer welchen Kernel er verwenden möchte und führt das ausgewählte Abbild aus. vmlinux.gz.new und vmlinux.gz.working können entweder die eigentlichen Kernel-Abbilder, oder lediglich symbolische Links die auf Kernel-Abbilder auf dieser Festplatte verweisen sein. Das Argument 50 von select gibt an, dass mit der ersten Option ("Working") nach 50/10 Sekunden fortgefahren werden soll.

DATEI default.coloMenübasierte Konfiguration
#:CoLo:#
lcd "Mounting hda1"
mount hda1
select "Which Kernel?" 50 Working New
  
goto {menu-option}
var image-name vmlinux.gz.working
goto 3f
@var image-name vmlinux.gz.working
goto 2f
@var image-name vmlinux.gz.new
  
@lcd "Loading Linux" {image-name}
load /{image-name}
lcd "Booting..."
execute root=/dev/sda5 ro console=ttyS0,115200
boot

Für mehr Informationen sehen Sie sich bitte die Dokumentation unter /usr/share/doc/colo-VERSION an.

Serielle Konsole einrichten

Die Linux Installation so wie sie jetzt ist würde booten aber voraussetzen, dass der Benutzer an einem physischen Terminal eingeloggt ist. Auf Cobalt Maschinen ist das besonders schlecht -- es gibt so etwas wie ein physisches Terminal nicht.

Notiz
Diejenigen die den Luxus eines unterstützten Video-Chipsatz haben, können wenn sie möchten diesen Abschnitt überspringen.

Öffnen Sie als erstes die Datei /etc/inittab mit einem Editor. Etwas weiter unten in der Datei betrachten Sie folgendes:

DATEI /etc/inittabinittab Ausschnitt
# SERIAL CONSOLE
#c0:12345:respawn:/sbin/agetty 9600 ttyS0 vt102
  
# TERMINALS
c1:12345:respawn:/sbin/agetty 38400 tty1 linux
c2:12345:respawn:/sbin/agetty 38400 tty2 linux
c3:12345:respawn:/sbin/agetty 38400 tty3 linux
c4:12345:respawn:/sbin/agetty 38400 tty4 linux
c5:12345:respawn:/sbin/agetty 38400 tty5 linux
c6:12345:respawn:/sbin/agetty 38400 tty6 linux
  
# What to do at the "Three Finger Salute".
ca:12345:ctrlaltdel:/sbin/shutdown -r now

Entfernen Sie das Kommentarzeichen ("#") der Zeile c0. Als Standard ist sie darauf eingestellt eine Terminal-Baudrate von 9600 bps zu nutzen. Auf Cobalt Servern kann dies auf 115200 bps eingestellt werden, um der Baudrate die vom BOOT ROM festgesetzt ist zu entsprechen. Das folgende Listing zeigt wie der Abschnitt anschließend aussieht. Auf Bildschirmlosen Systemen (z.B. Cobalt Servern) empfehlen wir ebenfalls die Zeilen der lokalen Terminals (c1 bis c6) auszukommentieren, da diese die Angewohnheit haben sich schlecht zu verhalten, wenn sie /dev/ttyX nicht öffnen können.

DATEI /etc/inittabinittab Beispielausschnitt
# SERIAL CONSOLE
c0:12345:respawn:/sbin/agetty 115200 ttyS0 vt102
  
# TERMINALS -- These are useless on a headless qube
#c1:12345:respawn:/sbin/agetty 38400 tty1 linux
#c2:12345:respawn:/sbin/agetty 38400 tty2 linux
#c3:12345:respawn:/sbin/agetty 38400 tty3 linux
#c4:12345:respawn:/sbin/agetty 38400 tty4 linux
#c5:12345:respawn:/sbin/agetty 38400 tty5 linux
#c6:12345:respawn:/sbin/agetty 38400 tty6 linux

Nun müssen wir dem System mitteilen, dass dem lokalen seriellen Anschluss als sicherem Terminal vertraut werden kann. Die Datei die wir dazu ändern müssen ist /etc/securetty. Sie enthält eine Liste von Terminals denen das System vertraut. Wir fügen einfach zwei weitere Zeilen hinzu, die der seriellen Verbindung Root-Logins gestatten.

root #echo 'ttyS0' >> /etc/securetty

In letzter Zeit benötigt Linux ebenfalls /dev/tts/0 -- deshalb fügen wir dies auch hinzu:

root #echo 'tts/0' >> /etc/securetty

SGI PROM Anpassung

Allgemeine PROM Einstellungen

Mit installiertem Bootloader, nach dem Neustart (zu dem wir in Kürze kommen), begeben Sie sich in das System Maintenance Menu und wählen Enter Command Monitor (5) so wie anfangs beim Netzboot des Systems.

CODE Menü nach dem Booten
1) Start System
2) Install System Software
3) Run Diagnostics
4) Recover System
5) Enter Command Monitor

Geben Sie den Speicherort des Volume-Header an:

>>setenv SystemPartition scsi(0)disk(1)rdisk(0)partition(8)

Automatisch Gentoo booten:

>>setenv AutoLoad Yes

Die Zeitzone setzen:

>>setenv TimeZone EST5EDT

Verwenden Sie die serielle Konsole - Benutzer von Grafikkarten sollten "g" anstelle von "d1" (eins) angeben:

>>setenv console d1

Stellen Sie die Baudrate der seriellen Konsole ein. Dies ist optional. Die Standardeinstellung ist 9600, wenngleich man Datenraten bis zu 38400 verwenden kann, falls gewünscht:

>>setenv dbaud 9600

Die nächsten Einstellungen hängen davon ab, wie das System gebootet wird.

Einstellungen für direktes booten vom Volume-Header

Notiz
Dies wird hier der Vollständigkeit halber abgedeckt. Wir empfehlen stattdessen, dass sich der Benutzer die Installation von arcload ansieht.
Notiz
Dies funktioniert nur auf Indy, Indigo2 (R4k) und Challenge S.

Ersetzen Sie <root device> durch die Root Partition von Gentoo, wie beispielsweise /dev/sda3:

>>setenv OSLoadPartition <root device>

Um die verfügbaren Kernel aufzulisten geben sie "ls" ein.

>>setenv OSLoader <kernel name>
>>setenv OSLoadFilename <kernel name>

Legen die zu übergebenden Kernel-Parameter fest:

>>setenv OSLoadOptions <kernel parameters>

Um einen Kernel zu versuchen ohne mit den Kernel-Parametern herumzuhantieren, verwenden Sie den boot -f PROM Befehl:

root #boot -f new root=/dev/sda5 ro

arcload Einstellungen

arcload verwendet die Option OSLoadFilename um festzulegen welche Optionen von arc.cf eingestellt werden. Die Konfigurationsdatei ist im Grunde ein Skript, das Boot-Abbilder auf der obersten Ebene für verschiedene Systeme definiert und innerhalb von diesen optionale Einstellungen. Somit zieht OSLoadFilename=mysys(serial) die Einstellungen für den mysys block herein und stellt weitere in serial überschriebene Optionen ein.

Im der Beispieldatei oben haben wir einen System-Block ip28 definiert, mit den Optionen working, new und debug. Wir definieren unsere PROM Variablen wie folgt:

Wählen Sie arcload als Bootloader:- sash64 oder sashARCS:

>>setenv OSLoader sash64

Verwenden Sie das "working" Kernel-Abbild, das im "ip28" Abschnitt von arc.cf definiert ist:

>>setenv OSLoadFilename ip28(working)

Beginnend mit arcload-0.5 müssen Dateien nicht länger im Volume-Header plaziert sein -- sie können statt dessen in einer Partition liegen. Um arcload mitzuteilen wo es nach seiner Konfigurationsdatei und Kernels suchen soll, müssen Sie die PROM Variable OSLoadPartition setzen. Der hier genau anzugebende Wert hängt davon ab, wo die Festplatte auf dem SCSI Bus liegt. Verwenden Sie die PROM Variable SystemPartition als Vorlage -- nur die Partitionsnummer sollte geändert werden müssen.

Notiz
Partitionen sind durchnummeriert beginnend mit 0, nicht 1 wie bei Linux.

Um vom Volume-Header zu laden, verwenden Sie Partition 8:

>>setenv OSLoadPartition scsi(0)disk(1)rdisk(0)partition(8)

Andernfalls geben Sie die Partition und den Dateisystemtyp an:

>>setenv OSLoadPartition scsi(0)disk(1)rdisk(0)partition(0)[ext2]


Neustart des Systems

Verlassen Sie die chroot-Umgebung und hängen Sie alle gemounteten Partitionen aus. Geben Sie dann den magischen Befehl ein, der den alles entscheidenden Test einleitet - reboot.

root #exit
cdimage ~#cd
cdimage ~#umount -l /mnt/gentoo/dev{/shm,/pts,}
cdimage ~#umount -R /mnt/gentoo
cdimage ~#reboot

Vergessen Sie nicht, das Installations-Medium zu entfernen. Andernfalls könnte erneut das Installations-Medium anstelle des neuen Gentoo Systems gebootet werden.

Nach dem Neustart in die neu installierte Gentoo Umgebung können Sie Ihre Installation mit dem Kapitel Abschluss der Gentoo Installation fertigstellen.




Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎polski • ‎русский • ‎українська • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
MIPS Handbuch
Installation
Über die Installation
Auswahl des Mediums
Konfiguration des Netzwerks
Vorbereiten der Festplatte(n)
Installation des Stage Archivs
Installation des Basissystems
Konfiguration des Kernels
Konfiguration des Systems
Installation der Tools
Konfiguration des Bootloaders
Abschluss
Arbeiten mit Gentoo
Portage-Einführung
USE-Flags
Portage-Features
Initskript-System
Umgebungsvariablen
Arbeiten mit Portage
Dateien und Verzeichnisse
Variablen
Mischen von Softwarezweigen
Zusätzliche Tools
Eigener Portage-Tree
Erweiterte Portage-Features
Netzwerk-Konfiguration
Zu Beginn
Fortgeschrittene Konfiguration
Modulare Vernetzung
Drahtlose Netzwerke
Funktionalität hinzufügen
Dynamisches Management


Benutzerverwaltung

Hinzufügen eines Benutzers für den täglichen Gebrauch

Arbeiten als root in einem Unix/Linux System ist gefährlich und sollte, wenn immer möglich, vermieden werden. Wir empfehlen daher nachdrücklich das Einrichten eines Benutzers für die täglichen Aufgaben.

Die Gruppen, denen ein Benutzer angehört, definieren, welche Aktivitäten der User ausführen kann. Die folgende Tabelle listet die wichtigsten Gruppen, die Sie vermutlich benutzen wollen:

Gruppe Beschreibung
audio Benutzer kann Audiogeräte benutzen.
cdrom Benutzer kann optische Laufwerke direkt benutzen.
floppy Benutzer kann Diskettenlaufwerke direkt benutzen.
games Benutzer darf Spiele ausführen.
portage Benutzer darf auf eingeschränkte Ressourcen von portage zugreifen.
usb Benutzer darf USB-Geräte benutzen.
video Benutzer darf Geräte zur Videoaufnahme benutzen und Hardwarebeschleunigung nutzen.
wheel Benutzer darf su benutzen.

In unserem Beispiel erstellen wir einen Benutzer larry, der Mitglied der Gruppen wheel, users und audio werden soll. Loggen Sie sich dazu zunächst als root ein (nur root kann Benutzer erstellen) und führen Sie useradd aus:

Login:root
Password: (Ihr root-Passwort)
root #useradd -m -G users,wheel,audio -s /bin/bash larry
root #passwd larry
Password: (Hier das Passwort für larry eintragen)
Re-enter password: (Das Passwort zur Kontrolle noch einmal eingeben)

Wenn Benutzer eine bestimmte Aufgabe als root durchführen möchten, können sie den Befehl su - verwenden, um temporär Rechte als root zu erhalten. Alternativ kann das sudo-Paket verwendet werden, welches mit richtiger Konfiguration sehr sicher ist.

Aufräumen der Festplatte

Entfernen der Tar-Archive

Da nun die Gentoo Installation abgeschlossen ist und das System neu gestartet wurde, können Sie, sofern alles funktioniert, das heruntergeladene Stage Tar-Archiv von Ihrer Festplatte entfernen. Erinnern Sie sich daran, dass diese Datei in Ihr /-Verzeichnis heruntergeladen wurde?

root #ls -la /stage3-*.tar.*
root #rm /stage3-*.tar.*

Wie geht es weiter?

Dokumentation

Gratulation! Sie haben jetzt ein funktionierendes Gentoo Linux-System. Aber wie geht es nun weiter? Es gibt viele Wege zu entdecken... Gentoo bietet seinen Benutzern viele Möglichkeiten und hat deshalb viele gut dokumentierte (und auch weniger gut dokumentierte) Eigenschaften, die hier im Wiki und in anderen Bereichen (siehe den folgenden Abschnitt Gentoo Online) erkundet werden können.

Leser sollten definitiv einen Blick in den nächsten Teil des Gentoo Handbuchs werden: Arbeiten mit Gentoo. Dort wird erklärt, wie Sie Ihre Software aktuell halten und zusätzliche Software installieren können, was USE-Flags sind, und wie das Init-System OpenRC funktioniert. Er enthält viele weitere Informationen darüber, wie man ein Gentoo Linux System nach der Installation verwaltet.

Neben dem Handbuch sollten Anwender auch andere Teile des Wikis erkunden, in denen zusätzliche, von der Community erstellte Dokumentation zur Verfügung steht. Das Gentoo Wiki Team bietet eine Übersicht über die Dokumentation im Wiki an, in der Sie eine nach Kategorien sortierte Liste von Wiki Artikeln finden. Beispielsweise gibt es dort einen Link zum Lokalisierungsleitfaden, mit dem man das System noch etwas angenehmer einrichten kann (besonders hilfreich für diejenigen, für die Englisch nicht die Muttersprache ist).

Gentoo Online

Wichtig
Bitte beachten Sie, dass für alle von Gentoo offiziell angebotenen Online Dienste Gentoos Code of Conduct (Verhaltenscodex) gilt. Die aktive Teilnahme an der Gentoo Community ist ein Privileg, kein Recht. Nutzer sollten sich darüber im Klaren sein, dass der "Code of Conduct" aus gutem Grund besteht.

Die meisten Gentoo Websites benötigen einen eigenen User Account, damit Sie Fragen stellen, Diskussionen eröffnen oder einen Bug melden können. Eine Ausnahme hiervon sind das bei Freenode gehostete Internet Relay Chat (IRC) Netzwerk und die Mailing-Listen.

Forums und IRC

Jeder Anwender ist willkommen in unseren Gentoo-Foren oder in einem unserer Internet Relay Chat Channels. Es ist einfach, in den Foren zu suchen, ob ein Problem bereits entdeckt, besprochen und gelöst wurde (dies gilt sowohl für "Anfänger"-Probleme, als auch für Probleme von fortgeschrittenen Anwendern). Die Wahrscheinlichkeit, dass andere Anwender schon die gleichen Probleme hatten, ist erstaunlich hoch. Wir bitten Anwender, zuerst die Foren und das Wiki zu durchsuchen, bevor sie in den Gentoo Support Channels um Hilfe bitten.

Tip
Zum Suche in den Foren oder im Wiki können die dortigen Such-Maschinen verwendet werden. Es können aber auch die bekannten Suchmaschinen wie Google, Bing, DuckDuckGo genutzt werden. Bei Google kann man beispielsweise durch den Zusatz von "site:forums.gentoo.org" angeben, dass nur die Gentoo Foren nach den Suchbegriffen durchsucht werden sollen.

Mailing-Listen

Mehrere Mailing-Listen sind verfügbar für Community-Mitglieder, die lieber E-Mail für Support-Anfragen oder Feedback verwenden, als einen User Account bei den Foren oder bei IRC anzulegen. Anwender, die diesen Dienst nutzen wollen, müssen die Anleitungen befolgen, um die gewünschten Mailing-Listen zu abonnieren.

Bugs

Manchmal gibt es trotz Suche im Forum und Hilfe-Anfragen im Forum, in den Mailing-Listen und im IRC Channel keine Lösung für ein Problem. In vielen Fällen ist das ein Zeichen dafür, das ein Bug in der Gentoo Bugzilla Datenbank erstellt werden sollte.

Development guide

Leser, die gerne mehr über die Entwicklung von Gentoo erfahren möchten, können einen Blick auf den Development Guide werfen. Dieser Leitfaden enthält Anleitungen zum Schreiben von ebuilds und zur Arbeit mit eclasses. Weiterhin enthält er eine Beschreibung für viele Generelle Konzepte bei der Gentoo Entwicklung.

Abschließende Betrachtungen

Gentoo ist eine robuste, flexible und hervorragend gewartete Distribution. Die Entwickler-Community freut sich über Feedback darüber, wie man Gentoo zu einer noch besseren Distribution machen kann.

Zur Erinnerung: Feedback zu "diesem Handbuch" sollte den Richtlinien entsprechen, die am Anfang dieses Handbuchs besprochen wurden: Wie kann ich helfen, das Handbuch zu verbessern?

Wir sind sehr gespannt darauf, wie unsere Anwender Gentoo Linux nutzen werden!




Warning: Display title "Gentoo Linux mips Handbuch: Gentoo installieren" overrides earlier display title "Handbuch:MIPS/Komplett/Installation".