ハンドブック:PPC/インストール/カーネル
任意自由選択: ファームウェアとマイクロコードのインストール
ファームウェア
カーネルコンフィグの節へ進む前に知っておいたほうが良いこととして、一部のハードウェアデバイスは、それを適切に動作させるために追加の (時として FOSS ライセンスに準拠しない) ファームウェアをインストールする必要がある、ということがあります。これはデスクトップとラップトップの両方で広く見られる、無線ネットワークインターフェースで必要になることが多いです。AMD、Nvidia、Intel などのベンダによる最近のビデオチップも、完全に機能させるには外部のファームウェアが必要になることが多いです。最近のハードウェアデバイスのためのファームウェアの多くは sys-kernel/linux-firmware パッケージ内で見つかるかもしれません。
最初のシステムリブートの前に、もし必要だった場合にファームウェアを使えるようにしておくために、sys-kernel/linux-firmware パッケージをインストールしておくことが推奨されます:
root #
emerge --ask sys-kernel/linux-firmware
一部のファームウェアパッケージのインストールには、関連するファームウェアライセンスを受諾する必要があることがよくあります。必要であれば、ライセンスの受諾についてはハンドブックのライセンスの取り扱いの節を確認してください。
モジュールとしてビルド (M) されたカーネルシンボルは、カーネルにロードされたときに、関連するファームウェアファイルをファイルシステムからロードすることに注意してください。モジュールとしてロードされるシンボルに関しては、デバイスのファームウェアファイルをカーネルのバイナリイメージに含める必要はありません。
マイクロコード
個別のグラフィックスハードウェアやネットワークインターフェースに加えて、CPU もまたファームウェアアップデートを必要とすることがあります。こうしたファームウェアは典型的にはマイクロコードと呼ばれます。新しいリビジョンのマイクロコードは、動作の不安定さ、セキュリティ上の懸念、その他の CPU ハードウェアのさまざまなバグに対するパッチとして、必要になることがあります。
AMD CPU に対するマイクロコードアップデートは、先述の sys-kernel/linux-firmware パッケージとともに配布されます。Intel CPU に対するマイクロコードは sys-firmware/intel-microcode パッケージ内で見つかりますので、これを個別にインストールする必要があります。マイクロコードアップデートを適用する方法についてのさらなる情報は、マイクロコードの記事を確認してください。
カーネルのコンフィギュレーションとコンパイル
これで、カーネルソースを設定、コンパイルする準備が整いました。インストールの目的に応じてカーネルの管理のためのアプローチを 3 通り紹介しますが、インストール完了後はいつでも別のアプローチを採用し直すことができます。
簡単なものから込み入ったものへ、順に並べると:
- 完全自動アプローチ: ディストリビューションカーネル
- ディストリビューションカーネルは、Linux カーネル、関連するモジュール、および (必須ではありませんがデフォルトでは有効化されている) initramfs ファイルを、設定、自動でビルド、インストールするために利用されます。将来のカーネル更新はパッケージマネージャを介して扱われるため、他のシステムパッケージとまったく同様に完全に自動で行われます。カスタマイズが必要な場合はカスタムのカーネルコンフィグファイルを提供することも可能です。これが最も簡単なプロセスで、すぐ動作するものが手に入りシステム管理者による関与を最小にできるため、新規の Gentoo ユーザには完璧です。
- ハイブリッドアプローチ: Genkernel
- 新しいカーネルのソースがシステムパッケージマネージャを通じてインストールされます。システム管理者は Linux カーネル、関連するモジュール、および (必須ではありませんがデフォルトでは有効化されていない) initramfs ファイルを、ジェネリックに設定、自動でビルド、インストールするために Gentoo の genkernel ツールを使用します。カスタマイズが必要な場合はカスタムのカーネルコンフィグファイルを提供することも可能です。将来のカーネル設定、コンパイル、インストールには、アップデートのたびに eselect kernel、genkernel、およびもし必要であれば他のコマンドを実行する形で、システム管理者による関与が必要です。
- 完全手動アプローチ
- 新しいカーネルのソースがシステムパッケージマネージャを通じてインストールされます。カーネルは eselect kernel と無数の make コマンドを利用して、手動で設定、ビルド、インストールされます。将来のカーネル更新はカーネルファイルの設定、ビルド、インストールの手動プロセスを繰り返して行います。これが最も込み入ったプロセスですが、カーネル更新プロセスに関して最大限の制御を行えます。
すべてのディストリビューションが構築されるその中心にあるのが Linux カーネルです。カーネルレイヤーはユーザのプログラムとハードウェアの間に存在します。ハンドブックではカーネルソースについていくつかの可能な選択肢を提供しますが、より詳しい説明付きで、より完全なカーネルソースのリストは、カーネルの概要のページで見ることができます。
カーネルソースのインストール
この節の内容は、これ以降の部分で示す genkernel (ハイブリッド) アプローチか、マニュアルカーネル管理のアプローチを採用したときのみ関係があります。
ppc ベースのシステムにカーネルを手動でインストールしてコンパイルする場合には、Gentoo はsys-kernel/gentoo-sources パッケージを推奨しています。
適切なカーネルソースを選択して、emerge でインストールします:
root #
emerge --ask sys-kernel/gentoo-sources
このコマンドはカーネルソースを /usr/src/ の下に、カーネルバージョン毎のパスを分けてインストールします。選択されたカーネルソースパッケージに対して USE=symlink
が有効化されていなければ、シンボリックリンクは自動で作成されません。
現在実行しているカーネルに対応するソースを指すように、/usr/src/linux シンボリックリンクを維持することは慣例となっています。しかし、このシンボリックリンクはデフォルトでは作成されないでしょう。シンボリックリンクを作成する簡単な方法は、eselect の kernel モジュールを利用することです。
シンボリックリンクの目的と、それを管理する方法についてのさらなる情報は、Kernel/Upgrade を参照してください。
まず、インストールされているカーネルを一覧表示します:
root #
eselect kernel list
Available kernel symlink targets: [1] linux-3.16.5-gentoo
linux シンボリックリンクを作成するには、次を使用してください:
root #
eselect kernel set 1
root #
ls -l /usr/src/linux
lrwxrwxrwx 1 root root 12 Oct 13 11:04 /usr/src/linux -> linux-3.16.5-gentoo
別の方法: Genkernel
すべてをマニュアルで設定することが困難だと思われる場合は、システム管理者はカーネル管理のためのハイブリッドアプローチとして、genkernel を使うことを考えてみるべきです。
Genkernel はジェネリックカーネルコンフィギュレーションファイルを提供し、自動的にカーネル (kernel)、initramfs、および関連するモジュールを生成 (generate) し、生成されたバイナリを適切な場所にインストールします。これによりシステムの初回起動のための最小限かつジェネリックなハードウェアサポートが得られ、さらなる更新の制御と、将来のカーネル設定のカスタマイズが可能になります。
注意: システム管理者はカーネルの保守のために genkernel を使うことで、システムのカーネル、initramfs、その他のオプションに関する更新をより制御できるようになります。その一方で、将来的に新しいソースがリリースされてカーネル更新を実施するときには、時間と労力をかけた献身が確実に必要となるでしょう。システム任せのカーネル保守アプローチを求めているのなら、ディストリビューションカーネルを使用するべきです。
For additional clarity, it is a misconception to believe genkernel automatically generates a custom kernel configuration for the hardware on which it is run; it uses a predetermined kernel configuration that supports most generic hardware and automatically handles the make commands necessary to assemble and install the kernel, the associate modules, and the initramfs file.
Binary redistributable software license group
If the linux-firmware package has been previously installed, then skip onward to the to the installation section.
As a prerequisite, due to the firwmare
USE flag being enabled by default for the sys-kernel/genkernel package, the package manager will also attempt to pull in the sys-kernel/linux-firmware package. The binary redistributable software licenses are required to be accepted before the linux-firmware will install.
This license group can be accepted system-wide for any package by adding the @BINARY-REDISTRIBUTABLE
as an ACCEPT_LICENSE value in the /etc/portage/make.conf file. It can be exclusively accepted for the linux-firmware package by adding a specific inclusion via a /etc/portage/package.license/linux-firmware file.
If necessary, review the methods of accepting software licenses available in the Installing the base system chapter of the handbook, then make some changes for acceptable software licenses.
If in analysis paralysis, the following will do the trick:
root #
mkdir /etc/portage/package.license
/etc/portage/package.license/linux-firmware
Accept binary redistributable licenses for the linux-firmware packagesys-kernel/linux-firmware @BINARY-REDISTRIBUTABLE
インストール
説明や前提条件はさておき、sys-kernel/genkernel パッケージをインストールしてください:
root #
emerge --ask sys-kernel/genkernel
生成
genkernel all を実行してカーネルソースをコンパイルしましょう。ただ、genkernel は多種多様に異なるコンピュータアーキテクチャのために、幅広いハードウェアをサポートするカーネルを生成するため、コンパイルが完了するまでにかなりの時間がかかることがあるということに注意しましょう。
もしルートパーティションまたはボリュームが ext4 以外のファイルシステムを使用している場合、おそらく genkernel --menuconfig all を使ってマニュアルでカーネルを設定し、その特定のファイルシステムのためのサポートを (モジュールとしてファイルシステムをビルドするのではなく) カーネルに組み込む必要があるでしょう。
LVM2 のユーザは以下の genkernel コマンドの引数に
--lvm
を加えるべきです。root #
genkernel --mountboot --install all
genkernel が完了したら、カーネルと初期 RAM ファイルシステム (initramfs) が生成され、/boot ディレクトリにインストールされていることでしょう。関連するモジュールは /lib/modules ディレクトリにインストールされるでしょう。initramfs は、(live ディスクイメージ環境でそうであるように) ハードウェアの自動検出を行うために、カーネルをロードした後すぐに開始されます。
root #
ls /boot/vmlinu* /boot/initramfs*
root #
ls /lib/modules
別の方法: マニュアル設定
はじめに
カーネルのマニュアル設定は、しばしばLinuxユーザーがしなければならない最も難しい手続きと考えられます。これは真実ではありません。カーネルを数回設定してみれば、それが難しいと言われていたことなど忘れてしまうでしょう!
しかし、一つだけ真実があります。カーネルをマニュアルで設定する時、ハードウェア情報を知ることはとても役に立ちます。ほとんどの情報は、lspciコマンドを含むsys-apps/pciutilsをインストールすることで得られます。
root #
emerge --ask sys-apps/pciutils
chroot環境では、lspciが出力していると思われる(pcilib: cannot open /sys/bus/pci/devicesのような)pcilibの警告は、無視しても構いません。
システム情報を得るための別の方法は、lsmodを使ってインストールCDが使っているカーネルモジュールを把握することです。その情報は何を有効にすべきかとてもよいヒントを与えてくれるでしょう。
では、カーネルソースがあるディレクトリに移動して、make menuconfigを実行しましょう。このコマンドはメニューベースの設定画面を起動します。
root #
cd /usr/src/linux
root #
make menuconfig
Linuxカーネルの設定はとても多くのセクションを持っています。まず最初にいくつかの必須オプションを述べましょう(そうでない場合、Gentooは動作しない、もしくは追加の処置なしには正しく動作しません)。 Gentoo wikiのGentoo カーネルコンフィグレーションガイドには、さらに役立つ記述があるでしょう。
必須オプションを有効にする
もし sys-kernel/gentoo-sources を使用する場合は、Gentoo 固有のコンフィギュレーションオプションを有効化することを強く推奨します。これらは、正しく機能するために必要な最小限のカーネルの機能が有効化されることを確実にします:
Gentoo Linux ---> Generic Driver Options ---> [*] Gentoo Linux support [*] Linux dynamic and persistent device naming (userspace devfs) support [*] Select options required by Portage features Support for init systems, system and service managers ---> [*] OpenRC, runit and other script based systems and managers [*] systemd
通常、最後の 2 行の選択は init システムの選択(OpenRC か systemd か)に依存します。両方の init システムへのサポートを有効化しても害はありません。
もし sys-kernel/vanilla-sources を使用する場合は、この init システムに関する追加の選択項目は利用できないでしょう。サポートを有効化することは可能ですが、このハンドブックの範囲からは外れることです。
典型的なシステムコンポーネントへのサポートを有効化する
システムのブートに必須となるドライバ (SATA コントローラ、NVMe ブロックデバイスサポート、ファイルシステムサポート等) は、モジュールではなく、カーネルの一部としてコンパイルしなければなりません。そうしないと、システムがまったくブートできない場合があります。
次に正確なプロセッサタイプを選択します。このとき、もし使えるのであればMCE機能を有効にすることが推奨されます。これによりハードウェアの異常が通知されるようになるでしょう。いくつかのアーキテクチャ(x86_64)で、これらのエラーはdmesgでは確認できませんが、/dev/mcelogにログが残ります。この機能を有効にするためにapp-admin/mcelogパッケージが必要になります。
また、Maintain a devtmpfs file system to mount at /devを選択することで、必須となるデバイスファイルがブートプロセスの初期段階で使えるようになります (CONFIG_DEVTMPFS と CONFIG_DEVTMPFS_MOUNT):
Device Drivers ---> Generic Driver Options ---> [*] Maintain a devtmpfs filesystem to mount at /dev [*] Automount devtmpfs at /dev, after the kernel mounted the rootfs
SCSI ディスクサポートが有効になっているか確認してください(CONFIG_BLK_DEV_SD):
Device Drivers ---> SCSI device support ---> <*> SCSI device support <*> SCSI disk support
Device Drivers ---> <*> Serial ATA and Parallel ATA drivers (libata) ---> [*] ATA ACPI Support [*] SATA Port Multiplier support <*> AHCI SATA support (ahci) [*] ATA BMDMA support [*] ATA SFF support (for legacy IDE and PATA) <*> Intel ESB, ICH, PIIX3, PIIX4 PATA/SATA support (ata_piix)
基本的な NVMe サポートが有効になっているか確認してください:
Device Drivers ---> <*> NVM Express block device
Device Drivers ---> NVME Support ---> <*> NVM Express block device
以下の追加の NVMe サポートを有効化しても害はありません:
[*] NVMe multipath support [*] NVMe hardware monitoring <M> NVM Express over Fabrics FC host driver <M> NVM Express over Fabrics TCP host driver <M> NVMe Target support [*] NVMe Target Passthrough support <M> NVMe loopback device support <M> NVMe over Fabrics FC target driver < > NVMe over Fabrics FC Transport Loopback Test driver (NEW) <M> NVMe over Fabrics TCP target support
次にFile Systemsで、システムが使用するファイルシステムに必要なサポートを選択しましょう。ルートファイルシステムに使われるファイルシステムをモジュールとしてコンパイルしてはいけません。モジュールにした場合、システムがパーティションをマウントできないおそれがあります。また、ここでVirtual memoryと/proc file systemも選択してください。システムの必要に応じて以下の選択肢から1個以上を選択してください:
File systems ---> <*> Second extended fs support <*> The Extended 3 (ext3) filesystem <*> The Extended 4 (ext4) filesystem <*> Btrfs filesystem support DOS/FAT/NT Filesystems ---> <*> MSDOS fs support <*> VFAT (Windows-95) fs support Pseudo Filesystems ---> [*] /proc file system support [*] Tmpfs virtual memory file system support (former shm fs)
もしインターネットに接続するために、PPPoEもしくはダイヤルアップモデムを使う場合、次のオプションを有効にしてください (CONFIG_PPP, CONFIG_PPP_ASYNC, and CONFIG_PPP_SYNC_TTY):
Device Drivers ---> Network device support ---> <*> PPP (point-to-point protocol) support <*> PPP over Ethernet <*> PPP support for async serial ports <*> PPP support for sync tty ports
2つの圧縮オプションは選択しても差し支えありませんが、必須というわけでもありません。PPP over Ethernetオプションも同様です。これはカーネルモードのPPPoEをするために設定された時だけにpppによって使用されるものです。
カーネルにネットワークカード(イーサネットもしくはワイヤレス)のサポートを組み込むことを忘れてはいけません。
多くのシステムではマルチコアを使用できます。Symmetric multi-processing supportを有効にすることは重要です (CONFIG_SMP):
Processor type and features ---> [*] Symmetric multi-processing support
マルチコアシステムでは、それぞれのコアが1プロセッサとカウントされます。
USB接続の入力装置(キーボードやマウス)などのUSBデバイスを使用する場合、以下を必ず有効にしてください:
Device Drivers ---> HID support ---> -*- HID bus support <*> Generic HID driver [*] Battery level reporting for HID devices USB HID support ---> <*> USB HID transport layer [*] USB support ---> <*> xHCI HCD (USB 3.0) support <*> EHCI HCD (USB 2.0) support <*> OHCI HCD (USB 1.1) support <*> Unified support for USB4 and Thunderbolt --->
Architecture specific configuration
Before starting to configure the Linux kernel, run
make pmac32_defconfig
to make sure a kernel is created that boots on most 32-bit PowerPC systems:
root #
cd /usr/src/linux
root #
make pmac32_defconfig
root #
make menuconfig
Make sure to enable support for Amiga partitions if using a Pegasos system, or Macintosh partitions when using an Apple computer.
Users of NewWorld and OldWorld machines will want HFS support as well. OldWorld users require it for copying compiled kernels to the MacOS partition. NewWorld users require it for configuring the special Apple_Bootstrap partition:
File Systems ---> Miscellaneous filesystems ---> <M> Apple Macintosh file system support <M> Apple Extended HFS file system support
Don't forget to include support in the kernel for the right Ethernet card! Most newer Apple computers use the SunGEM ethernet driver. Older iMacs commonly use the BMAC driver.
Device Drivers ---> Network device support ---> Ethernet (10 or 100Mbit) ---> [*] Ethernet (10 or 100Mbit) <*> Generic Media Independent Interface device support <*> MACE (Power Mac ethernet) support <*> BMAC (G3 ethernet) support <*> Sun GEM support
When booting from FireWire, enable the following options.
Device Drivers ---> IEEE 1394 (FireWire) support ---> <*> IEEE 1394 (FireWire) support <*> OHCI-1394 support <*> SBP-2 support (Harddisks etc.)
Do not turn off kernel framebuffer support as it is required for a successful boot. When using an NVIDIA based chipset,use the Open Firmware framebuffer. When using an ATI based chipset, select the framebuffer driver based upon the right chipset (Mach64, Rage128 or Radeon).
Device Drivers ---> Graphics support ---> <*> Support for frame buffer devices [*] Open Firmware frame buffer device support <*> ATI Radeon display support <*> ATI Rage128 display support <*> ATI Mach64 display support Console display driver support ---> <*> Framebuffer Console support
To select more than one framebuffer device, it may default to a less than optimal driver. Either use only one framebuffer device or specify which to use by passing the driver to use to the kernel on boot by appending a video line such as
video=radeonfb
.コンパイルおよびインストール
With the kernel is configured, it is time to compile and install it. Exit the configuration menu and run the following commands:
root #
make && make modules_install
It is possible to enable parallel builds using
make -jX
with X being the number of parallel tasks that the build process is allowed to launch. This is similar to the instructions about /etc/portage/make.conf earlier, with the MAKEOPTS
variable.When the kernel has finished compiling, copy the kernel image to /boot/ as shown below. When using a separate boot partition, as on Pegasos computers, be sure that it is mounted properly. When using BootX to boot, we'll copy the kernel later.
Yaboot and BootX expect to use an uncompressed kernel unlike many other boot loaders. The uncompressed kernel is called vmlinux and it is placed in /usr/src/linux/ after the kernel has finished compiling. When using a Pegasos machine, the Pegasos firmware requires a compressed kernel called zImage which can be found in /usr/src/linux/arch/powerpc/boot/images/.
root #
cd /usr/src/linux
Apple または IBM の場合:
root #
cp vmlinux /boot/kernel-3.16.5-gentoo
Pegasos の場合:
root #
cp arch/powerpc/boot/images/zImage /boot/kernel-3.16.5-gentoo
任意自由選択: initramfsのビルド
いくつかの特別なケースで initramfs - initial ram-based file system (訳注: 起動時の RAM ベースのファイルシステム) のビルドが必要になります。最もよくある理由は、重要なディレクトリ(/usr/、/var/等)が別パーティションにある場合です。initramfsがあれば、initramfsの中にあるツールを使うことで、これらのパーティションをマウントすることができます。
initramfs が無いと、ファイルシステムをマウントするツールがまだマウントされていないファイルシステムの中にある情報を必要としている場合、システムが正しく起動できないリスクがあります。initramfs はカーネルブートの直後かつ制御が init ツールに移る前に必要なファイルをアーカイブに引き込みます。initramfs のスクリプトはシステムがブートを継続するために必要なパーティションを正しくマウントすることを保証します。
genkernel を使用する場合は、カーネルおよび initramfs の両方をビルドでこれを使用するべきです。genkernel を initramfs の生成のためだけに使用する場合は、genkernel に
--kernel-config=/path/to/kernel.config
を渡すのがきわめて重要です。そうしないと、生成された initramfs が手動でビルドされたカーネルと同時に動作しない場合があります。手動でビルドされたカーネルはハンドブックのサポート範囲外であることに注意してください。詳細についてはカーネルコンフィギュレーションの記事を確認してください。initramfsをインストールするために、最初にsys-kernel/dracutをインストールしましょう。そしてinitramfsを生成します。
root #
emerge --ask sys-kernel/dracut
root #
dracut --kver=3.16.5-gentoo
initramfsは/boot/に保存されます。生成されるファイルは単純にinitramfsで始まります。
root #
ls /boot/initramfs*
次はカーネルモジュールです。
カーネルモジュール
利用可能なカーネルモジュールを一覧表示する
ハードウェアモジュールを手作業で列挙する必要はありません。ほとんどの場合、udev は接続を検出したハードウェアのモジュールを自動でロードします。ですが、自動でロードされるであろうモジュールを列挙することは特に有害ではありません。モジュールが二度ロードされることはありません。モジュールの状態は、ロードされているかいないか、どちらかしかありません。時として変なハードウェアは、ドライバをロードするのにこうした手助けが必要になることがあります。
/etc/modules-load.d/*.conf ファイルに、ブート時に毎回ロードしなければならないモジュールを、1 行ごとに 1 モジュールのフォーマットで追加することができます。モジュールに追加のオプションを与える必要があれば、ここではなく /etc/modprobe.d/*.confファイルで設定すべきです。
特定のカーネルバージョンで利用可能なすべてのモジュールを把握するためには、次の find コマンドを実行してください。"<kernel version>" を検索したいカーネルのバージョンで適切に置き換えることを忘れないでください:
root #
find /lib/modules/<kernel version>/ -type f -iname '*.o' -or -iname '*.ko' | less
特定のカーネルモジュールのロードを強制する
3c59x.ko モジュール (これは特定の 3Com ネットワークカードファミリのためのドライバです) をロードするようにカーネルに強制するには、/etc/modules-load.d/network.conf 内にモジュール名を記載してください。
root #
mkdir -p /etc/modules-load.d
root #
nano -w /etc/modules-load.d/network.conf
モジュールの .ko ファイル拡張子はロード機構にとって重要ではなく、設定ファイルから除かれるということに注意してください:
/etc/modules-load.d/network.conf
強制的に3c59x モジュールをロードする3c59x
では、システムの設定に進み、インストールを続けましょう。