Handbuch:Alpha/Installation/Festplatten

From Gentoo Wiki
Jump to:navigation Jump to:search
This page is a translated version of the page Handbook:Alpha/Installation/Disks and the translation is 100% complete.
Other languages:
Deutsch • ‎English • ‎Türkçe • ‎español • ‎français • ‎italiano • ‎polski • ‎português do Brasil • ‎русский • ‎தமிழ் • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
Alpha Handbuch
Installation
Über die Installation
Auswahl des Mediums
Konfiguration des Netzwerks
Vorbereiten der Festplatte(n)
Installation des Stage Archivs
Installation des Basissystems
Konfiguration des Kernels
Konfiguration des Systems
Installation der Tools
Konfiguration des Bootloaders
Abschluss
Arbeiten mit Gentoo
Portage-Einführung
USE-Flags
Portage-Features
Initskript-System
Umgebungsvariablen
Arbeiten mit Portage
Dateien und Verzeichnisse
Variablen
Mischen von Softwarezweigen
Zusätzliche Tools
Eigener Portage-Tree
Erweiterte Portage-Features
Netzwerk-Konfiguration
Zu Beginn
Fortgeschrittene Konfiguration
Modulare Vernetzung
Drahtlose Netzwerke
Funktionalität hinzufügen
Dynamisches Management


Einführung in blockorientierte Geräte

Blockorientierte Geräte

Schauen wir uns die Festplatten-spezifischen Aspekte von Gentoo Linux und Linux im Allgemeinen an - insbesondere blockorientierte Geräte (Block Devices), Partitionen und Linux Dateisysteme. Wenn Sie die Vor- und Nachteile von Festplatten verstanden haben, können Sie Partitionen und Dateisysteme für die Installation erstellen.

Zu Beginn schauen wir uns blockorientierte Geräte an. SCSI- und SATA-Laufwerke haben Device-Namen wie: /dev/sda, /dev/sdb, /dev/sdc usw. Modernere Rechner können PCI-Express basierte NVMe Solid-State-Disks haben, die Device-Namen haben wie: /dev/nvme0n1, /dev/nvme0n2 usw.

Die folgende Tabelle soll Lesern dabei helfen herauszufinden, wo bestimmte Arten von blockorientierten Geräten zu finden sind:

Geräte-Typ Standard Geräte-name Anmerkungen
SATA, SAS, SCSI, oder USB flash /dev/sda Found on hardware from roughly 2007 until the present, this device handle is perhaps the most commonly used in Linux. These types of devices can be connected via the SATA bus, SCSI, USB bus as block storage. As example, the first partition on the first SATA device is called /dev/sda1.
NVM Express (NVMe) /dev/nvme0n1 The latest in solid state technology, NVMe drives are connected to the PCI Express bus and have the fastest transfer block speeds on the market. Systems from around 2014 and newer may have support for NVMe hardware. The first partition on the first NVMe device is called /dev/nvme0n1p1.
MMC, eMMC, und SD /dev/mmcblk0 embedded MMC devices, SD cards, and other types of memory cards can be useful for data storage. That said, many systems may not permit booting from these types of devices. It is suggested to not use these devices for active Linux installations; rather consider using them to transfer files, which is their design goal. Alternatively they could be useful for short-term backups.

Die oben genannten blockorientierten Geräte repräsentieren eine abstrakte Schnittstelle zur Festplatte. Benutzerprogramme können diese Block Devices nutzen, um mit der Festplatte zu interagieren, ohne sich darum sorgen zu müssen, ob die Festplatten über SATA, SCSI oder etwas anderem angebunden sind. Das Programm kann den Speicher auf der Festplatte einfach als eine Anhäufung zusammenhängender 4096-Byte (4k) Blöcke mit wahlfreiem Zugriff ansprechen.


Slices

Obwohl es theoretisch möglich wäre eine vollständige Festplatte zu nutzen um ein Linux-System unterzubringen, kommt das in der Praxis fast nie vor. Stattdessen werden komplette Festplatten Block Devices in kleinere, besser handhabbare Block Devices unterteilt. Auf Alpha-Systemen werden diese Slices genannt.

Notiz
In den folgenden Sektionen verwenden die Anweisungen zur Installation die Beispiel-Partitionierung des ARC/AlphaBIOS Setup. Bitte passen Sie diese Ihren persönlichen Vorstellungen an!

Ein Partitionsschema entwerfen

Wie viele Partitionen und wie groß?

Bei dem Design des Partitionsschemas sollten die Anforderungen an das System und an die Dateisysteme berücksichtigt werden. Wenn es viele Nutzer gibt, ist eine eigene Partition /home/ ratsam, da diese die Sicherheit erhöht und Backups und andere Wartungsarbeiten vereinfacht. Wenn Gentoo installiert wird, um als Mailserver zu dienen, dann sollte es eine eigene Partition /var/ geben, weil alle Mails im Verzeichnis /var/ gespeichert werden. Spiele-Server werden eine eigene Partition /opt/ besitzen, da die meiste Spiele-Server-Software dort installiert wird. Der Grund für diese Empfehlungen ist ähnlich wie für das /home/ Verzeichnis: Sicherheit, Backups und Wartung.

Bei den meisten Gentoo-Installationen sollten /usr/ und /var/ relativ groß sein. In /usr werden die Mehrzahl der Anwendungen und auch der Linux Kernel Quellcode gespeichert (unter /usr/src). Standardmäßig enthält /var/ das Gentoo ebuild Repository (unter /var/db/repos/gentoo), das alleine schon rund 650 MiB Plattenplatz benötigt. Diese Größenabschätzung enthält noch nicht den benötigten Plattenplatz für die Verzeichnisse /var/cache/distfiles und /var/cache/binpkgs, die sich im Laufe der Zeit mit Source-Code Dateien und (optional) mit Binärpaketen füllen werden - je nachdem, wann und wie sie dem System hinzugefügt werden.

Die Anzahl und Größe der Partitionen hängt vom Abwägen der Vor- und Nachteile und der Auswahl der besten Lösung für einen gegebenen Anwendungsfall ab. Separate Partitionen oder Volumes haben folgende Vorteile:

  • Sie können das performanteste Dateisystem für jede Partition oder jedes Volume wählen.
  • Dem Gesamtsystem kann der freie Speicherplatz nicht ausgehen, wenn ein fehlerhaftes Tool kontinuierlich Dateien auf eine Partition oder ein Volume schreibt.
  • Falls nötig, kann die Zeit für Dateisystemüberprüfungen reduziert werden, da mehrere Überprüfungen gleichzeitig durchgeführt werden können. (Dieser Vorteil kommt aber eher bei mehreren Festplatten, als bei mehreren Partitionen auf einer Festplatte zum Tragen.)
  • Sie können die Sicherheit erhöhen, indem Sie einige Partitionen oder Volumes "read-only", nosuid (setuid Flags werden ignoriert), noexec (executable Flags werden ignoriert) etc. einbinden.


Viele separate Partitionen können aber auch Nachteile haben:

  • Wenn diese schlecht an das System angepasst sind, kann es sein, dass eine Partition voll ist und auf einer anderen Partition noch viel freier Platz verfügbar ist.
  • Eine separate Partition für /usr/ kann es erforderlich machen, dass beim Booten ein initramfs verwendet wird, welches diese Partitionen vor der Ausführung anderer Boot-Skripte mountet. Das Erzeugen und Betreiben eines initramsfs ist nicht Teil dieses Handbuchs. Wir empfehlen Anfängern, für /usr/ keine eigene Partition zu verwenden.
  • Es gibt ein Limit von maximal 15 Partitionen für SCSI und SATA - es sei denn, der Datenträger nutzt GPT-Labels.
Notiz
Wenn Sie systemd verwenden wollen, muss /usr/ beim Booten verfügbar sein - entweder als Teil des Root-Dateisystems oder mit Hilfe eines initramfs gemountet.

Was ist mit dem Swap-Speicher?

Es gibt keine perfekte Größe für den Swap-Speicher. Der Zweck von Swap-Speicher ist, Festplattenspeicherplatz für den Kernel bereitzuhalten, wenn der interne Speicher (RAM) knapp wird. Der Swap-Speicher erlaubt dem Kernel, Speicherseiten, auf die vermutlich nicht bald zugegriffen wird, auf die Platte auszulagern (Swap oder Page-Out). Dadurch kann Arbeitsspeicher im RAM für den aktuell laufenden Prozess freigemacht werden. Werden die auf die Festplatte ausgelagerten Speicherseiten (Pages) jedoch plötzlich benötigt, müssen diese Seiten wieder zurück in den Arbeitsspeicher geladen werden (Page-In). Dies dauert jedoch erheblich länger, als wenn die Daten direkt aus dem RAM gelesen werden könnten (da Festplatten verglichen mit Arbeitsspeicher sehr langsam sind).

Wenn auf einem System keine speicherintensiven Anwendungen ausgeführt werden oder das System viel RAM zur Verfügung hat, benötigt es vermutlich nicht viel Swap-Speicher. Wenn jedoch der Ruhezustand "Hibernation" verwendet werden soll, wird der Swap-Speicher verwendet, um den gesamten Inhalt des Hauptspeichers (RAM) zu sichern (dieser Ruhezustand wird bei Desktop- und Laptop-Systemen häufiger verwendet, als bei Servern). Wenn das System den Ruhezustand "Hibernation" unterstützen soll, muss der Swap-Speicher so groß wie oder größer als der Hauptspeicher (RAM) sein.

Als generelle Regel gilt: der Swap-Speicher sollte zwei Mal so groß sein wie der Arbeitsspeicher (RAM). Auf Systemen mit mehreren (rotierenden) Festplatten ist es sinnvoll, eine Swap-Partition auf jeder Festplatte einzurichten, damit Schreib-/Lese-Operationen parallel ausgeführt werden können. Je schneller auf einen Festplatte zugegriffen werden kann, desto schneller wird das System arbeiten, wenn auf Swap-Speicher zugegriffen werden muss. Wenn zwischen rotierenden Festplatten und SSDs gewählt werden kann, ist es aus Performance-Sicht besser, den Swap-Speicher auf die SSD zu legen. Alternativ zu Swap-Partitionen können auch Swap-Dateien verwendet werden; dies ist hauptsächlich interessant bei Systemen mit sehr geringem Festplatten-Platz.


Festplatte mit fdisk partitionieren (nur SRM)

Die folgenden Abschnitte erklären, wie das Slice-Layout Beispiel für SRM zu erstellen ist:

Slice Beschreibung
/dev/sda1 Swap Slice
/dev/sda2 Root Slice
/dev/sda3 Gesamte Festplatte (benötigt)

Ändern Sie das Slice Layout Ihren Vorstellungen entsprechend ab.

Verfügbare Festplatten identifizieren

Um herauszufinden welche Festplatten im System laufen, verwenden sie die folgenden Befehle:

Für IDE Festplatten:

root #dmesg | grep 'drive$'

Für SCSI Festplatten:

root #dmesg | grep 'scsi'

Die Ausgabe zeigt an, welche Festplatten erkannt wurden und deren jeweiligen /dev/ Eintrag. In den folgenden Abschnitten gehen wir davon aus, dass es sich um eine SCSI Festplatte auf /dev/sda handelt.

Starten Sie jetzt fdisk:

root #fdisk /dev/sda

Löschen aller Slices

Wenn die Festplatte komplett leer ist, dann erstellen Sie zunächst ein BDS Disklabel.

Command (m for help):b
/dev/sda contains no disklabel.
Do you want to create a disklabel? (y/n) y
A bunch of drive-specific info will show here
3 partitions:
#       start       end      size     fstype   [fsize bsize   cpg]                                    
  c:        1      5290*     5289*    unused        0     0

Wir beginnen mit dem Löschen aller Slices mit Ausnahme der 'c'-Slice (eine Anforderung bei der Nutzung von BSD Disklabels). Im Nachfolgenden zeigen wir, wie eine Slice gelöscht wird (im Beispiel verwenden wir 'a'). Wiederholen Sie den Vorgang um alle anderen Slices zu löschen (wieder mit Ausnahme der 'c'-Slice).

Verwenden Sie p um alle existierenden Slices anzuzeigen. d wird zum Löschen einer Slice betätigt.

BSD disklabel command (m for help):p
8 partitions:
#       start       end      size     fstype   [fsize bsize   cpg]                                    
  a:        1       235*      234*    4.2BSD     1024  8192    16
  b:      235*      469*      234*      swap
  c:        1      5290*     5289*    unused        0     0
  d:      469*     2076*     1607*    unused        0     0
  e:     2076*     3683*     1607*    unused        0     0
  f:     3683*     5290*     1607*    unused        0     0
  g:      469*     1749*     1280     4.2BSD     1024  8192    16
  h:     1749*     5290*     3541*    unused        0     0
BSD disklabel command (m for help):d
Partition (a-h): a

Nachdem Sie diesen Vorgang für alle Slices wiederholt haben, sollte die Auflistung in etwa wie folgt aussehen:

BSD disklabel command (m for help):p
3 partitions:
#       start       end      size     fstype   [fsize bsize   cpg]                                    
  c:        1      5290*     5289*    unused        0     0

Swap Slice erstellen

Auf Alpha basierten Systemen gibt es keine Notwendigkeit für eine separate Boot Slice. Wie auch immer, der erste Zylinder darf nicht verwendet werden, weil das "aboot" Abbild dort abgelegt wird.

Wir werden eine Swap Slice beginnend beim dritten Zylinder, mit einer Gesamtgröße von 1 GB erstellen. Verwenden Sie n um eine neue Slice anzulegen. Nach der Erzeugung der Slice ändern Sie den Typ auf 1 (eins), was Swap bedeutet.

BSD disklabel command (m for help):n
Partition (a-p): a
First cylinder (1-5290, default 1): 3
Last cylinder or +size or +sizeM or +sizeK (3-5290, default 5290): +1024M
BSD disklabel command (m for help):t
Partition (a-c): a
Hex code (type L to list codes): 1

Nach diesen Schritten sollte Ihr Layout ähnlich dem folgenden aussehen:

BSD disklabel command (m for help):p
3 partitions:
#       start       end      size     fstype   [fsize bsize   cpg]                                    
  a:        3      1003      1001       swap
  c:        1      5290*     5289*    unused        0     0

Root Slice erstellen

Wer werden nun die Root Slice beginnend mit dem ersten Zylinder nach der Swap Slice erstellen. Verwenden Sie den p Befehl um zu sehen, wo die Swap Slice endet. In unserem Beispiel ist dies bei 1003, so dass die Root Slice bei 1004 beginnt.

Ein weiteres Problem ist, dass es derzeit einen Bug in fdisk gibt. Dieser führt dazu, dass fdisk meint es würde ein Zylinder mehr zur Verfügung stehen als tatsächlich der Fall ist. In anderen Worten: Wenn Sie nach dem letzten Zylinder gefragt werden, verringern Sie die Zylindernummer (im Beispiel: 5290) um eins.

Wenn die Slice erzeugt wurde ändern Sie den Typ für ext2 auf 8.

BSD disklabel command (m for help):n
Partition (a-p): b
First cylinder (1-5290, default 1): 1004
Last cylinder or +size or +sizeM or +sizeK (1004-5290, default 5290): 5289
BSD disklabel command (m for help):t
Partition (a-c): b
Hex code (type L to list codes): 8

Das Slice Layout sollte nun ähnlich dem folgenden aussehen:

BSD disklabel command (m for help):p
3 partitions:
#       start       end      size     fstype   [fsize bsize   cpg]                                    
  a:        3      1003      1001       swap
  b:     1004      5289      4286       ext2
  c:        1      5290*     5289*    unused        0     0

Slice Layout speichern und fdisk beenden

Beenden Sie das Programm fdisk durch Drücken der Taste w. Dies wird gleichzeitig das Slice Layout speichern.

Command (m for help):w

Festplatte mit fdisk partitionieren (nur ARC/AlphaBIOS)

Die folgenden Abschnitte beschreiben, wie das Slice-Layout Beispiel für ARC/AlphaBIOS erzeugt wird:

Slice Beschreibugn
/dev/sda1 Boot Partition
/dev/sda2 Swap Partition
/dev/sda3 Root Partition

Ändern Sie das Layout der Partitionen entsprechend Ihrer Vorstellungen ab.

Verfügbare Festplatten identifizieren

Um herauszufinden welche Festplatten im System laufen, verwenden Sie die Folgenden Befehle:

Für IDE Festplatten:

root #dmesg | grep 'drive$'

Für SCSI Festplatten:

root #dmesg | grep 'scsi'

Abhängig von der Ausgabe sollte einfach zu erkennen sein, welche Festplatten gefunden wurden und deren zugehörige /dev/ Einträge. In den folgenden Abschnitten gehen wir davon aus, Dass es sich um eine SCSI Festplatte an /dev/sda handelt.

Starten Sie jetzt fdisk:

root #fdisk /dev/sda

Löschen aller Partitionen

Wenn die Festplatte komplett leer ist, dann müssen Sie zuerst ein DOS Disklabel erstellen.

Command (m for help):o
Building a new DOS disklabel.

Wir beginnen mit dem Löschen aller Partitionen. Im folgenden wird gezeigt, wie man eine Partition löscht (im Beispiel verwenden wir '1'). Wiederholen Sie den Vorgang um auch alle anderen Partitionen zu löschen.

Verwenden Sie p um alle existierenden Partitionen anzeigen zu lassen. Betätigen Sie d zum Löschen einer Partition.

command (m for help):p
Disk /dev/sda: 9150 MB, 9150996480 bytes
64 heads, 32 sectors/track, 8727 cylinders
Units = cylinders of 2048 * 512 = 1048576 bytes
  
   Device Boot      Start         End      Blocks   Id  System
/dev/sda1               1         478      489456   83  Linux
/dev/sda2             479        8727     8446976    5  Extended
/dev/sda5             479        1433      977904   83  Linux Swap
/dev/sda6            1434        8727     7469040   83  Linux
command (m for help):d
Partition number (1-6): 1

Boot Partition erstellen

Auf Alpha-Systemen die MILO zum Booten verwenden, müssen wir eine kleine vfat Bootpartition erstellen.

Command (m for help):n
Command action
  e   extended
  p   primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-8727, default 1): 1
Last cylinder or +size or +sizeM or +sizeK (1-8727, default 8727): +16M
Command (m for help):t
Selected partition 1
Hex code (type L to list codes): 6
Changed system type of partition 1 to 6 (FAT16)

Swap Partition erstellen

Wir werden eine Swap Partition mit einer Gesamtkapazität von 1 GB erzeugen. Drücken Sie n um eine neue Partition zu erstellen.

Command (m for help):n
Command action
  e   extended
  p   primary partition (1-4)
p
Partition number (1-4): 2
First cylinder (17-8727, default 17): 17
Last cylinder or +size or +sizeM or +sizeK (17-8727, default 8727): +1000M
Command (m for help):t
Partition number (1-4): 2
Hex code (type L to list codes): 82
Changed system type of partition 2 to 82 (Linux swap)

Nach diesen Schritten sollte Ihr Layout ähnlich dem folgenden aussehen:

Command (m for help):p
Disk /dev/sda: 9150 MB, 9150996480 bytes
64 heads, 32 sectors/track, 8727 cylinders
Units = cylinders of 2048 * 512 = 1048576 bytes
  
   Device Boot      Start         End      Blocks   Id  System
/dev/sda1               1          16       16368    6  FAT16
/dev/sda2              17         971      977920   82  Linux swap

Root Partition erstellen

Wir werden nun die Roop Partition erzeugen. Verwenden Sie wieder einfach den Befehl n.

Command (m for help):n
Command action
  e   extended
  p   primary partition (1-4)
p
Partition number (1-4): 3
First cylinder (972-8727, default 972): 972
Last cylinder or +size or +sizeM or +sizeK (972-8727, default 8727): 8727

Nach diesen Schritten sollte Ihr Layout ähnlich dem folgenden aussehen:

Command (m for help):p
Disk /dev/sda: 9150 MB, 9150996480 bytes
64 heads, 32 sectors/track, 8727 cylinders
Units = cylinders of 2048 * 512 = 1048576 bytes
  
   Device Boot      Start         End      Blocks   Id  System
/dev/sda1               1          16       16368    6  FAT16
/dev/sda2              17         971      977920   82  Linux swap
/dev/sda3             972        8727     7942144   83  Linux

Partitionslayout Speichern und fdisk beenden

Speichern Sie die Änderungen, die Sie in fdisk vorgenommen haben durch Eingabe von w. Durch diesen Befehl wird gleichzeitig auch das Programm beendet.

Command (m for help):w

Nachdem die Partitionen jetzt erstellt sind, fahren sie nun beim Abschnitt Dateisystem erstellen fort.



Erstellen von Dateisystemen

Einleitung

Nachdem die Partitionen angelegt wurden, ist es an der Zeit, Dateisysteme darauf anzulegen. Im nächsten Abschnitt werden die unterschiedlichen Dateisysteme beschrieben, die Linux unterstützt. Leser, die bereits wissen, welches Dateisystem sie verwenden wollen, können bei Dateisystem auf einer Partition anlegen fortfahren. Alle anderen sollten weiterlesen, um mehr über die verfügbaren Dateisysteme zu erfahren ...

Dateisysteme

Linux unterstützt mehrere Dutzend Dateisysteme, wobei allerdings viele davon für ganz spezielle Anwendungszwecke optimiert sind. Nur einige Dateisysteme gelten als stabil auf der alpha Architektur. Es ist ratsam, sich über Dateisysteme und deren Unterstützungsgrad zu informieren, damit Sie nicht für wichtige Partitionen ein eher experimentelles Dateisystem wählen. ext4 ist das empfohlene all-round Dateisystem für alle Plattformen.

btrfs
Ein "next-generation" Dateisystem, das moderne Features wie Snapshots, Selbst-Heilung mit Hilfe von Checksums, transparente Komprimierung, Subvolumes und integriertes RAID enthält. Kernel älter als 5.4.y enthalten Fehler, die zu "Filesystem corruption" führen können. Solche Kernel sollten keinesfalls auf Produktibsystemen eingesetzt werden. Das englische Original dieses Handbuchs beschreibt die Fehler folgendermaßen: "Kernels prior to 5.4.y are not guaranteed to be safe to use with btrfs in production because fixes for serious issues are only present in the more recent releases of the LTS kernel branches. Filesystem corruption issues are common on older kernel branches, with anything older than 4.4.y being especially unsafe and prone to corruption. Corruption is more likely on older kernels (than 5.4.y) when compression is enabled. RAID 5/6 and quota groups unsafe on all versions of btrfs. Furthermore, btrfs can counter-intuitively fail filesystem operations with ENOSPC when df reports free space due to internal fragmentation (free space pinned by DATA + SYSTEM chunks, but needed in METADATA chunks). Additionally, a single 4K reference to a 128M extent inside btrfs can cause free space to be present, but unavailable for allocations. This can also cause btrfs to return ENOSPC when free space is reported by df. Installing sys-fs/btrfsmaintenance and configuring the scripts to run periodically can help to reduce the possibility of ENOSPC issues by rebalancing btrfs, but it will not eliminate the risk of ENOSPC when free space is present. Some workloads will never hit ENOSPC while others will. If the risk of ENOSPC in production is unacceptable, you should use something else. If using btrfs, be certain to avoid configurations known to have issues. With the exception of ENOSPC, information on the issues present in btrfs in the latest kernel branches is available at the btrfs wiki status page."
ext2
Das ist das erprobte und wahre Linux Dateisystem - aber es hat kein Metadaten-Journaling. Dies bedeutet, dass routinemäßige ext2 Dateisystemüberprüfungen beim Systemstart viel Zeit kosten können. Mittlerweile gibt es eine gute Auswahl an Journaling-Dateisystemen, die sehr schnell auf Konsistenz überprüft werden können und deshalb gegenüber ihren Nicht-Journaling-Ausführungen im Allgemeinen bevorzugt werden. Journaling-Dateisysteme verhindern lange Verzögerungen wenn das System gebootet ist und es passiert, dass das Dateisystem in einem inkonsistenten Zustand ist.
ext3
Die Journaling-Version des Dateisystems ext2. Es bietet Metadaten-Journaling für schnelle Wiederherstellung zusätzlich zu anderen Journaling-Modi wie Full-Data- und Ordered-Data-Journaling. Es verwendet einen H-Baum (Htree) Index der hohe Leistung in fast allen Situationen ermöglicht. Kurz gesagt, ext3 ist ein sehr gutes und verlässliches Dateisystem.
ext4
Ursprünglich als Abspaltung von ext3 entstanden, bringt ext4 neue Funktionen, Leistungsverbesserungen und den Wegfall der Größenbeschränkungen durch moderate Änderungen des On-Disk-Formats. Es kann Datenträger mit bis zu 1 EB und mit Dateigrößen von bis zu 16 TB verwalten. Anstelle der klassischen ext2/3 Bitmap-Block-Allokation nutzt ext4 Extents, die die Performance bei großen Dateien verbessern und Fragmentierung reduzieren. ext4 bietet zusätzlich ausgereiftere Block-Allokation-Algorithmen (Zeitverzögerte Allokation und mehrfache Preallokation), die es dem Dateisystemtreiber ermöglichen, das Layout der Daten auf der Festplatte zu optimieren. Es ist das empfohlene Allzweck-Dateisystem für jede Plattform.
f2fs
The Flash-Friendly File System was originally created by Samsung for the use with NAND flash memory. As of Q2, 2016, this filesystem is still considered immature, but it is a decent choice when installing Gentoo to microSD cards, USB drives, or other flash-based storage devices.
JFS
Das Hochleistungs-Journaling-Dateisystem von IBM. JFS ist ein schlankes, schnelles und verlässliches B+-Baum basiertes Dateisystem mit guter Performance unter verschiedensten Gegebenheiten.
ReiserFS
Ein B+-Baum basiertes Journaling-Dateisystem mit einer guten Allgemeinleistung, besonders im Umgang mit winzigen Dateien für den Preis von höherer CPU-Auslastung. ReiserFS version 3 is included in the mainline Linux kernel, but is not recommended to be used when initially installing a Gentoo system. Newer versions of the ReiserFS filesystem exist, however they require additional patching of the mainline kernel to be utilized.
XFS
Ein Dateisystem mit Metadaten-Journaling, das mit einer Reihe robuster Fähigkeiten daherkommt und für Skalierbarkeit optimiert ist. XFS scheint gegenüber unterschiedlichen Hardwareproblemen weniger fehlertolerant zu sein, aber es wird kontinuierlich weiterentwickelt und um moderne Features erweitert.
VFAT
Auch als FAT32 bekannt, wird von Linux unterstützt, aber unterstützt keine Standard UNIX Berechtigungen. Es wird vor allem aus Kompatibilitätsgründen zu anderen Betriebssystemen (Microsoft Windows oder Apple's OSX) verwendet. VFAT ist Voraussetzung für die Bootloader Firmware mancher Systeme (wie UEFI).
NTFS
This "New Technology" filesystem is the flagship filesystem of Microsoft Windows since Windows NT 3.1. Similar to VFAT above it does not store UNIX permission settings or extended attributes necessary for BSD or Linux to function properly, therefore it should not be used as a root filesystem. It should only be used for interoperability with Microsoft Windows systems (note the emphasis on only).

Dateisystem auf einer Partition anlegen

Dateisysteme können mit Hilfe von Programmen auf einer Partition oder auf einem Datenträger angelegt werden. Die folgende Tabelle zeigt, welchen Befehl Sie für welches Dateisystem benötigen. Um weitere Informationen zu einem Dateisystem zu erhalten, können Sie auf den Namen des Dateisystems klicken.

Dateisystem Befehl zum Anlegen Teil der Minimal CD? Gentoo Paket
btrfs mkfs.btrfs Yes sys-fs/btrfs-progs
ext2 mkfs.ext2 Yes sys-fs/e2fsprogs
ext3 mkfs.ext3 Yes sys-fs/e2fsprogs
ext4 mkfs.ext4 Yes sys-fs/e2fsprogs
f2fs mkfs.f2fs Yes sys-fs/f2fs-tools
jfs mkfs.jfs Yes sys-fs/jfsutils
reiserfs mkfs.reiserfs Yes sys-fs/reiserfsprogs
xfs mkfs.xfs Yes sys-fs/xfsprogs
vfat mkfs.vfat Yes sys-fs/dosfstools
NTFS mkfs.ntfs Yes sys-fs/ntfs3g

Um beispielsweise die EFI System-Partition (/dev/sda1) als FAT32 und die root-Partition (/dev/sda3) als ext4 zu formatieren (wie in dem Beispiel-Partitionsschema), würde man folgende Befehle verwenden:

root #mkfs.vfat -F 32 /dev/sda1
root #mkfs.ext4 /dev/sda3

Bei der Verwendung von ext2, ext3 oder ext4 auf kleinen Partitionen (kleiner als 8 GiB), sollte das Dateisystem mit den passenden Optionen erstellt werden, um genügend Inodes zu reservieren. Dies kann mit einer der folgenden Anweisungen erfolgen:

root #mkfs.ext2 -T small /dev/<device>
root #mkfs.ext3 -T small /dev/<device>
root #mkfs.ext4 -T small /dev/<device>

Dies vervierfacht die Zahl der Inodes für ein angegebenes Dateisystem in der Regel, da es dessen "bytes-per-inode" (Bytes pro Inode) von 16 kB auf 4 kB pro Inode reduziert.

Erzeugen Sie nun die Dateisysteme auf den zuvor erzeugten Partitionen (oder logischen Laufwerken).

Aktivieren der Swap-Partition

mkswap ist der Befehl der verwendet wird um Swap-Partitionen zu initialisieren:

root #mkswap /dev/sda2

Zur Aktivierung der Swap-Partition verwenden Sie swapon:

root #swapon /dev/sda2

Erzeugen und aktivieren Sie jetzt die Swap-Partition mit den oben genannten Befehlen.

Einhängen der Root-Partition

Nun, da die Partitionen initialisiert sind und ein Dateisystem beinhalten, ist es an der Zeit, diese einzuhängen. Verwenden Sie den Befehl mount, aber vergessen Sie nicht die notwendigen Einhänge-Verzeichnisse für jede Partition zu erzeugen. Als Beispiel hängen wir die Root-Partition ein:

root #mount /dev/sda3 /mnt/gentoo
Notiz
Wenn sich /tmp/ auf einer separaten Partition befinden muss, ändern Sie die Berechtigungen nach dem Einhängen:
root #chmod 1777 /mnt/gentoo/tmp
Dies gilt ebenfalls für /var/tmp.

In der Anleitung wird später das Dateisystem proc (eine virtuelle Schnittstelle zum Kernel) zusammen mit anderen Kernel Pseudo-Dateisystemen eingehängt. Zunächst installieren wir jedoch die Gentoo Installationsdateien.