Handbook:Alpha/Installation/Disks/cs

From Gentoo Wiki
Jump to:navigation Jump to:search
This page is a translated version of the page Handbook:Alpha/Installation/Disks and the translation is 50% complete.
Alpha Handbook
Instalace
O instalaci
Výběr média
Konfigurace sítě
Příprava disků
Instalace stage3
Instalace základního systému
Konfigurace jádra
Konfigurace systému
Instalace nástrojů
Konfigurace zavaděče
Dokončení
Práce s Gentoo
Úvod do Portage
Přepínače USE
Funkce portage
Systém initskriptů
Proměnné prostředí
Práce s Portage
Soubory a adresáře
Proměnné
Mísení softwarových větví
Doplňkové nástroje
Vlastní strom Portage
Pokročilé funkce
Konfigurace sítě
Začínáme
Pokročilá konfigurace
Modulární síťování
Bezdrátové sítě
Přidání funkcí
Dynamická správa

Bloková zařízení

Pojďme se podrobně podívat na problematiku Gentoo Linuxu a Linuxu obecně ohledně disků, včetně blokových zařízení, diskových oddílů a systémů souborů. Jakmile si ukážeme všechny souvislosti, můžeme vytvořit oddíly disku a souborové systémy k nainstalování Gentoo Linuxu.

Pro začátek se podívejme na bloková zařízení. SCSI a Serial ATA disky jsou oboje označovány jako zařízení /dev/sda, /dev/sdb, /dev/sdc atd. Na novějších strojích s PCI Express NVMe pevnými disky jsou to zařízení /dev/nvme0n1, /dev/nvme0n2 atd.

Následující tabulka pomůže čtenářům určit, kde hledat v systému vyjmenovaná bloková zařízení:

Typ zařízení Výchozí soubor zařízení Poznámky a postřehy autorů
NVM Express (NVMe) /dev/nvme0n1 Nejnovější technologie v oblasti solid state, disky NVMe jsou připojené ke sběrnice PCI Express a mají nejvyšší přenosovou rychlost v blokových transkacích. Podpora zařízení NVMe se dá najít v systémech od roku 2014 a dál.
SATA, SAS, SCSI nebo USB flash /dev/sda Nalézá se v hardwaru zhruba od roku 2007 až do současnosti, tato zařízení jsou v Linuxu zřejmě nejpoužívanější. Tato zařízení se připojují prostřednictvím sběrnic SATA, SCSI nebo USB jako bloová úložiště.
MMC, eMMC a SD /dev/mmcblk0 Zařízení embedded MMC, SD karty a další typy paměťových karet jsou použitelné jako úložiště dat. Nicméně mnoho systémů nemusí umožňovat nastartování pomocí těchto zařízení. Doporučuje se nepoužívat tato zařízení pro aktivní instalace Linuxu; spíše zvažte jejich použití pro přenos souborů, pro tento účel byla navržena. Alternativně je lze využít pro krátkodobé zálohy.
IDE/PATA /dev/hda Starší ovladače Linuxového jádra IDE/Parallel ATA hardwaru zorbazovaly zařízení rotačních blokových zařízení připojených ke sběrnici IDE v tomto místě. Všeobecně lze říct, že tato zařízení jsou vyřazována z osobních počítačů od roku 2003, kdy se průmysl uchýlil ke standardu SATA. Většina systémů s jedním IDE řadičem může podporovat až čtyři zařízení (hda-hdd).
Alternativní pojmenování pro tato starší rozhraní zahrnují Extended IDE (EIDE) a Ultra ATA (UATA).

Shora uvedená bloková zařízení představují abstraktní rozhraní disků. Uživatelské programy využívají tato bloková zařízení k interakci s diskem bez toho, aby se musely starat o to, zda jde o disky IDE, SCSI nebo nějaké jiné. Program může přistupovat k úložnému prostoru na disku jako k hromadě souvislých, náhodně přístupných 4096bytových (4K) bloků.

Handbook:Alpha/Blocks/Disks/cs

Vytvoření systému souborů

Upozornění
When using SSD or NVMe drive, it is wise to check for firmware upgrades. Some Intel SSDs in particular (600p and 6000p) require a firmware upgrade for possible data corruption induced by XFS I/O usage patterns. The problem is at the firmware level and not any fault of the XFS filesystem. The smartctl utility can help check the device model and firmware version.

Úvod

Po vytvoření oddílů na disku je načase vytvořit na nich systém souborů. V následující sekci si popíšeme různé systémy souborů, které Linux podporuje. Čtenáři, kteří už vědí, jaký systém souborů použít, mohou pokračovat na aplikaci systému souborů na diskový oddíl. Ostatní by si měli přečíst, jaké systémy souborů jsou pro ně k dispozici.

Systémy souborů

Linux podporuje tucty souborových systémů, ačkoli většinu z nich je radno používat pro specifické účely. Pouze některé souborové systémy mohou být považovány na alpha architečktuře za stabilní. Radíme proto přečist si informace o systémech souborů a stavu jejich podpory před tím, než zvolíte některý experimentálnější z nich pro důležitý diskový oddíl.

btrfs
Systém souborů příští generace, který poskytuje mnoho pokročilých funkcí jako je tvorba snapshotů, samooprava prostřednictvím kontrolních součtů, transparentní komprese, pododdíly a integrovaný RAID. U verzí jádra nižších než je 5.4.y nelze garantovat bezpečné používání btrf v produkčních systémech, protože opravy závažných chyb jsou přítomné v novějších vydáních větví jádra LTS. Chyby systému souborů jsou na starších větvích jáder časté, přičemž jakákoli verze starší než je 4.4.y je obvzláště nebezpečná a náchylná k chybám. Pravěpodobnost chyb je vyšší na starších jádrech (než 5.4.y), když je zapnutá komprese. RAID 5/6 a skupiny kvót nejsou bezpečné v žádné verzi btrfs. Dále je třeba uvést, že btrfs může nečekaně selhávat při operacích souborového systému s chybou ENOSPC, ačkoli df hlásí volný prostor, v důsledku vnitřní fragmentace (volné místo rezervované pro DATA + SYSTEM kusy, ale potřebné pro METADATA kusy). Navíc, jediný 4K odkaz na 128M extent uvnitř btrfs může znamenat, že je tu volné místo, které však není k dispozici pro alokaci. To může také způsobit, že btrfs vrátí chybu ENOSPC, ačkoli df oznamuje volné místo. Instalace balíčku sys-fs/btrfsmaintenance a nastavení opakoveného spouštění skriptů může napomoci snížit výskyt problémů s ENOSPC rebalancováním btrfs, ale zcela to riziku výskytu ENOSPC nezabrání, i když je na disku volné místo. Některé činnosti nevyvolají ENOSPC nikdy, zatímco jiné ano. Pokud je riziko chyby ENOSPC v produkci neakceptovatelné, měli byste použít něco jiného. Pokud použijte btrfs, určitě se vyhněte konfiguracím, o nichž je známo, že působí problémy. S výjimkou ENOSPC jsou informace o těchto problémech btrfs v posledních nejnovějších k dispozi na wiki stránce statusu btrfs.
ext2
Toto je vyzkoušený a opravdový linuxový systém souborů, který ovšem nemá žurnál metadat, což znamená, že běžná kontrola systému souborů během startu může být značně časově náročná. V současnosti je na výběr celá řada systémů souborů nové generace, jejichž konzistence může být zkontrolována rychle a proto jsou obecně upřednostňovány oproti svým bezžurnálovým protějšků. Žurnálovací systémy souborů předchází dlouhým prodlevám při bootování systému, když je systém souborů v nekonzistentním stavu.
ext3
Žurnálem vybavená verze systému souborů ext2, která poskytuje žurnálování metadat pro rychlou obnovu s přídavkem dalších vylepšených módů žurnálu jako je full data nebo ordered data žurnálování. Používá HTree index, který umožňuje vysoký výkon téměř ve všech situacích. ve zlratce je ext3 velmi dobrý a spolehlivý systém souborů.
ext4
Ext4 byl od počátku oddělen z ext3 a přináší nové funkce, vylepšení výkonu a odstraňuje velikostní limity s menšími změna ve formátu dat na disku. Může pokrýt svazky až do velikosti 1 EB s maximální velikostí jednoho souboru 16TB. Na rozdíl od klasické alokace bloků pomocí bitmap z ext2/3, ext4 používá extenty, což vylepšuje výkon při práci s velkými soubory a snižuje fragmentaci. Ext4 přináší také sofistikovanější algoritmy pro alokaci bloků (zpožděná alokace a vícebloková alokace) poskytující ovladači systému souborů více cest k optimalizaci uložení dat na disku. Ext4 je doporučeným všestranným systémem souborů na všech platformách.
f2fs
Flash-Friendly File System byl původně vytořen společností Samsung k použití v pamětech NAND flash. Ke 2. čtvrtletí roku 2016 je stále považován za nezralý, ale jedná se o dobrou volbu při instalaci Gentoo na microSD karty, USB disky a další úložná zařízení založená na technologii flash.
JFS
Vysoce výkonný žurnálovací systém souborů společnosti IBM. JFS je lehký, rychlý a spolehlivý systém souborů založený na B+tree, s dobrým výkonem v různých podmínkách.
ReiserFS
B+tree žurnálovací systém souborů, který má dobrý celkový výkon, zejména při práci s mnoha malými soubory, za cenu více spotřebovaných cyklů CPU. ReiserFS verze 3 je součástí hlavní větve Linuxového jádra, ale jeho použití pči instalaci Gentoo se nedporučuje. Existují také novější verze souborového systému ReiserFS, ale ty vyžadují využití patchů hlavní větve jádra.
XFS
Systém souborů s žurnálováním metadat, který robustní sadou vlastností a je optimalizován ke škálování. XFS je náchylnější k různým problémům s hardwarem, ale je postupně doplňován o novější funkce.
VFAT
Systém souborů známý také jako FAT32 je Linuxem podporován, avšak neobsahuje podporu pro standardní UNIXové nastavení práv. Nejvíce je používán z důvodů interoperability s ostatními operečními systémy (především Microsoft Windows nebo Apple OSX), ale je nepostradatelný také pro firmware systémového zavaděče (jako je UEFI).
NTFS
Systém souborů "New Technology" je hlavním systémem souborů Microsoft Windows od Windows NT 3.1. Podobně jako výše uvedený vfat neukládá nastavení UNIXových práv nebo rozšířené atributy nezbytné pro řádné fungování BSD nebo Linuxu, protože by neměl být používán jako kořenový systém souborů. Měl by být použit pouze pro interoperabilitu se systémy Microsoft Windows (povšimněte si zvýraznění slova pouze).

More extensive information on filesystems can be found in the community maintained Filesystem article.

Aplikace systému souborů na diskový oddíl

Poznámka
Please make sure to emerge the relevant user space utilities package for the chosen filesystem before rebooting. There will be a reminder to do so near the end of the installation process.

Systém souborů vytvoříme pomocí uživatelských utilit, které jsou k dispozici pro každý z možných systémů souborů. Klikněte na název systému souborů v níže uvedené tabulce pro doplňující informace o každém z nich.

Systém souborů Příkaz k vytvoření Na minimálním CD? Balíček
btrfs mkfs.btrfs Ano sys-fs/btrfs-progs
ext2 mkfs.ext2 Ano sys-fs/e2fsprogs
ext3 mkfs.ext3 Ano sys-fs/e2fsprogs
ext4 mkfs.ext4 Ano sys-fs/e2fsprogs
f2fs mkfs.f2fs Ano sys-fs/f2fs-tools
jfs mkfs.jfs Ano sys-fs/jfsutils
reiserfs mkfs.reiserfs Ano sys-fs/reiserfsprogs
xfs mkfs.xfs Ano sys-fs/xfsprogs
vfat mkfs.vfat Ano sys-fs/dosfstools
NTFS mkfs.ntfs Ano sys-fs/ntfs3g
Důležité
The handbook recommends new partitions as part of the installation process, but it is important to note running any mkfs command will erase any data contained within the partition. When necessary, ensure any data that exists within is appropriately backed up before creating a few filesystem.

Máme-li například zaváděcí oddíl (/dev/sda1) s ext2 a kořenový oddíl (/dev/sda3) s ext4 jak je uvedeno v příkladu strukutury oddílů, použijeme následující příkazy:

root #mkfs.ext4 /dev/sda3

EFI system partition filesystem

The EFI system partition (/dev/sda1) must be formatted as FAT32:

root #mkfs.ext2 /dev/sda1

Legacy BIOS boot partition filesystem

Systems booting via legacy BIOS with a MBR/DOS disklabel can use any filesystem format supported by the bootloader.

For example, to format with XFS:

root #mkfs.xfs /dev/sda1

Small ext4 partitions

Pokud používáte ext2, ext3 nebo ext4 na malých oddílech (méně než 8 GiB), pak jej musíte vytvořit s pomocí správných voleb, aby byl rezervován dostatek uzlů. Aplikace mke2fs (mkfs.ext2) používá nastavení "bytes-per-inode" k výpočtu množství uzlů souborového systému. U menších oddílů je radno toto číslo zvýšit.

root #mkfs.ext2 -T small /dev/<device>
root #mkfs.ext3 -T small /dev/<device>
root #mkfs.ext4 -T small /dev/<device>

To obvykle zečtyřnásobí množství uzlů daného systému souborů, jelikož hodnota "bytes-per-inode" se zmenší z každých 16kB na každé 4kB. Dále lze tuto hodnotu nastavovat poskytnutím poměru:

Aktivace swap oddílu

mkswap je příkaz použitý k inicializaci swap oddílů:

root #mkswap /dev/sda2

K aktivaci oddílu swap použijte příkaz swapon:

root #swapon /dev/sda2

This 'activation' step is only necessary because the swap partition is newly created within the live environment. Once the system has been rebooted, as long as the swap partition is properly defined within fstab or other mount mechanism, swap space will activate automatically.

Připojení kořenového oddílu

Poznámka
Installations which were previously started, but did not finish the installation process can resume the installation from this point in the handbook. Use this link as the permalink: Resumed installations start here.

Certain live environments may be missing the suggested mount point for Gentoo's root partition (), or mount points for additional partitions created in the partitioning section:

root #mkdir --parents

For EFI installs only, the ESP should be mounted under the root partition location:

root #mkdir --parents

Continue creating additional mount points necessary for any additional (custom) partition(s) created during previous steps by using the mkdir command.

Teď, když jsou oddíly inicializovány a obsahují systém souborů je načase je připojit. Použijte příkaz mount, ale nezapomeňte vytvořit potřebné adresáře pro každý vytvořený oddíl. Jako příklad připojíme oddíl root:

Mount the root partition:

root #mount /dev/sda3 /mnt/gentoo

Continue mounting additional (custom) partitions as necessary using the mount command.

Poznámka
Pokud je nutné, aby adresář /tmp/ byl na vlastním oddíle, ujistěte se, že oprávnění budou po připojení změněna:
root #chmod 1777 /mnt/gentoo/tmp
To stejné platí pro adresář /var/tmp.

Později dojde k připojení systému souborů proc (virtuální rozhraní jádra) stejně jako dalších pseudo systémů souborů. Nejprve však nainstalujeme instalační soubory Gentoo.