Handbook:X86/Installation/Disks

From Gentoo Wiki
Jump to:navigation Jump to:search
This page is a translated version of the page Handbook:X86/Installation/Disks and the translation is 100% complete.
Other languages:
Deutsch • ‎English • ‎Türkçe • ‎español • ‎français • ‎italiano • ‎polski • ‎português do Brasil • ‎čeština • ‎русский • ‎தமிழ் • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
Manuale X86
Installazione
Riguardo l'installazione
Il mezzo d'installazione
Configurare la rete
Preparare i dischi
Installare lo stage3
Installare il sistema base
Configurare il kernel
Configurare il sistema
Strumenti di sistema
Configurare l'avviatore
Ultimare l'installazione
Lavorare con Gentoo
Introduzione a Portage
Opzioni USE
Funzionalità di Portage
Sistema script di init
Variabili d'ambiente
Lavorare con Portage
File e cartelle
Variabili
Mixare i rami del software
Strumenti aggiuntivi
Repositorio pacchetti personalizzato
Funzionalità avanzate
Configurare la rete
Come iniziare
Configurazione avanzata
Networking modulare
Wireless
Aggiungere funzionalità
Gestione dinamica


Introduzione ai dispositivi a blocchi

Dispositivi a blocchi

Approfondiamo ora gli aspetti relativi ai dischi di Gentoo Linux e Linux in generale, compresi i filesystem, le partizioni e i dispositivi a blocchi di Linux. Appena tutto sarà chiaro in merito ai filesystem, allora partizioni e filesystem potranno essere scelti per installare Gentoo Linux.

Per iniziare, diamo un'occhiata ai dispositivi a blocchi. Quello più noto è solitamente il primo disco in un sistema Linux, ovvero /dev/sda. I dischi SCSI e Serial ATA sono entrambi chiamati /dev/sd*; persino i dispositivi IDE sono etichettati /dev/sd* quando si usa il framework libata nel kernel. Invece, con il framework (libreria di codici) dei vecchi dispositivi, il primo disco IDE è /dev/hda.

The following table will help readers determine where to find a certain type of block device on the system:

Type of device Default device handle Editorial notes and considerations
SATA, SAS, SCSI, or USB flash /dev/sda Found on hardware from roughly 2007 until the present, this device handle is perhaps the most commonly used in Linux. These types of devices can be connected via the SATA bus, SCSI, USB bus as block storage. As example, the first partition on the first SATA device is called /dev/sda1.
NVM Express (NVMe) /dev/nvme0n1 The latest in solid state technology, NVMe drives are connected to the PCI Express bus and have the fastest transfer block speeds on the market. Systems from around 2014 and newer may have support for NVMe hardware. The first partition on the first NVMe device is called /dev/nvme0n1p1.
MMC, eMMC, and SD /dev/mmcblk0 embedded MMC devices, SD cards, and other types of memory cards can be useful for data storage. That said, many systems may not permit booting from these types of devices. It is suggested to not use these devices for active Linux installations; rather consider using them to transfer files, which is their design goal. Alternatively they could be useful for short-term backups.

I dispositivi a blocchi di cui sopra rappresentano un'interfaccia astratta del disco. I programmi dell'utente possono usare questi dispositivi a blocchi per interagire col disco senza doversi preoccupare del fatto che i dischi siano IDE, SCSI o altro. Il programma può semplicemente indirizzare lo spazio sul disco come un insieme di blocchi da 512 byte contigui e accessibili in modo casuale.



Tabelle delle partizioni

Benché per ospitare un sistema Linux sia teoricamente possibile usare un disco grezzo e non partizionato (quando si crea un RAID btrfs per esempio), praticamente ciò non viene mai fatto. Piuttosto, i dischi vengono suddivisi in unità a blocchi più piccole e maneggevoli. Su sistemi x86, esse sono chiamate partizioni. Attualmente sono standardizzate due tecnologie di partizionamento: MBR e GPT.

GPT

La configurazione tramite GPT (GUID Partition Table) usa identificatori a 64 bit per le partizioni. Lo spazio dove memorizza le informazioni sulle partizioni è molto più grande dei 512 byte dell'MBR, il ché significa che non c'è praticamente alcun limite alla quantità di partizioni definibili su un disco GPT. Inoltre, il limite per la dimensione massima di una partizione è di gran lunga maggiore (quasi 8 ZB - sì, zettabytes).

Quando l'interfaccia software del sistema, che si pone tra il sistema operativo e il firmware, è UEFI (anziché BIOS), GPT è quasi obbligatoria in quanto potrebbero sorgere problemi di compatibilità con MBR.

GPT trae anche vantaggio dalle somme di controllo (checksum) e dalla ridondanza. Porta il controllo CRC32 alla testata delle tabelle di partizione per rilevare errori ed offre un backup del segmento GPT alla fine del disco. Questo backup può essere usato per ripristinare i danni del segmento GPT corrente all'inizio del disco.

Important
There are a few caveats regarding GPT:
  • Using GPT on a BIOS-based computer works, but then one cannot dual-boot with a Microsoft Windows operating system. The reason is that Microsoft Windows will boot in UEFI mode if it detects a GPT partition label.
  • Some buggy (old) motherboard firmware configured to boot in BIOS/CSM/legacy mode might also have problems with booting from GPT labeled disks.

MBR

La configurazione tramite MBR (Master Boot Record) usa identificatori a 32 bit per il settore di avvio e per stabilire la grandezza delle partizioni. Supporta tre tipi di partizione: primaria, estesa e logica. Le partizioni primarie memorizzano le loro informazioni nel master boot record stesso - uno spazio molto piccolo (solitamente 512 byte) all'inizio del disco. A causa del poco spazio, vengono supportate solo quattro partizioni primarie (per esempio, da /dev/sda1 a /dev/sda4).

Per supportare più partizioni, una delle partizioni primarie può essere definita come partizione estesa. Questa partizione può in tal caso contenere a sua volta delle partizioni logiche (partizioni all'interno di una partizione).

Important
Although still supported by most motherboard manufacturers, MBR boot sectors and their associated partitioning limitations are considered legacy. Unless working with hardware that is pre-2010, it best to partition a disk with GUID Partition Table. Readers who must proceed with setup type should knowingly acknowledge the following information:
  • Most post-2010 motherboards consider using MBR boot sectors a legacy (supported, but not ideal) boot mode.
  • Due to using 32-bit identifiers, partition tables in the MBR cannot address storage space that is larger than 2 TiBs in size.
  • Unless a extended partition is created, MBR supports a maximum of four partitions.
  • This setup does not provide a backup boot sector, so if something overwrites the partition table, all partition information will be lost.

That said, MBR and BIOS boot is still frequently used in virtualized cloud environments such as AWS.

The Handbook authors suggest using GPT whenever possible for Gentoo installations.

Partizionamento avanzato

I CD di installazione x86 forniscono supporto per il gestore dei volumi logici (LVM). LVM accresce la flessibilità offerta dalla configurazione di partizionamento. Le istruzioni di installazione riportate di seguito si concentrano su partizioni "regolari", ma è bene sapere che anche LVM è supportato se si desidera proseguire per quella strada. Leggere l'articolo LVM per ulteriori dettagli. I nuovi arrivati stiano attenti: benché LVM sia completamente supportato, va al di là dello scopo di questa guida.

Schema di partizionamento predefinito

Throughout the remainder of the handbook, we will discuss and explain two cases: 1) GPT partition table and UEFI boot, and 2) MBR partition table and legacy BIOS boot. While it is possible to mix and match, that goes beyond the scope of this manual. As already stated above, installations on modern hardware should use GPT partition table and UEFI boot; as an exception from this rule, MBR and BIOS boot is still frequently used in virtualized (cloud) environments.

Per tutto il resto del manuale, verrà usato il seguento schema di partizionamento come esempio semplice di configurazione:

Partizione Filesystem Dimensione Descrizione
/dev/sda1 (bootloader) 2M Partizione di avvio BIOS
/dev/sda2 ext2 (o fat32 se si utilizza UEFI) 128M Partizione di sistema Boot/EFI
/dev/sda3 (swap) 512M o maggiore Partizione di swap
/dev/sda4 ext4 Spazio rimanente del disco Partizione radice (root)

Se ciò è sufficiente e il lettore ha scelto la configurazione GPT, si può proseguire con la sezione Predefinito: Uso di parted per partizionare il disco. Coloro che sono ancora interessati a MBR (ehi, capita!) e vogliono usare la configurazione d'esempio, possono proseguire con l'Alternativa: Uso di fdisk per partizionare il disco.

Sia fdisk che parted sono utilità di partizionamento. fdisk è ben noto, stabile, e raccomandato per la configurazione di partizionamento MBR, mentre parted è stata una delle prima utilità di gestione dei dispositivi a blocchi Linux a supportare le partizioni GPT. Coloro a cui piace l'interfaccia di fdisk possono usare gdisk (fdisk GPT) come alternativa a parted.

Prima di proseguire con le istruzioni di creazione, il primo insieme di sezioni descriverà con maggiori dettagli come si possono creare schemi di partizionamento e si menzioneranno alcune trappole comuni.

Progettazione di uno schema delle partizioni

Quante partizioni e quanto grandi?

Il numero di partizioni dipende fortemente dal tipo di ambiente. Per esempio, se sono previsti molti utenti, allora è consigliato avere la /home/ separata così da migliorare la sicurezza e rendere più facili i backup. Se Gentoo viene installato per fare da server di posta elettronica, allora /var/ è meglio che stia separata in quanto le email vengono memorizzate all'interno di /var/. Una buona scelta del filesystem massimizzerà le prestazioni. I server da gioco avranno /opt/ separata, in quando la maggior parte dei server da gioco sono installati lì. La ragione è simile al percorso /home/: sicurezza e backup. Nella maggior parte delle situazioni, /usr/ dovrà essere capiente: non solo contiene la maggior parte delle applicazioni, ma in genere ospita anche repository ebuild di Gentoo (solitamente su /usr/portage), che fin dall'inizio occupa già 650 MB. Questa stima dello spazio su disco esclude le cartelle packages/ e distfiles/ che sono generalmente memorizzate all'interno di questo archivio ebuild.

In most situations on Gentoo, /usr and /var should be kept relatively large in size. /usr hosts the majority of applications available on the system and the Linux kernel sources (under /usr/src). By default, /var hosts the Gentoo ebuild repository (located at /var/db/repos/gentoo) which, depending on the file system, generally consumes around 650 MiB of disk space. This space estimate excludes the /var/cache/distfiles and /var/cache/binpkgs directories, which will gradually fill with source files and (optionally) binary packages respectively as they are added to the system.

Molto dipende da ciò che desidera l'amministratore. Partizioni o volumi separati hanno i seguenti vantaggi:

  • Scelta del miglior filesystem per ciascuna partizione o volume.
  • L'intero sistema non esaurirà lo spazio, nel caso in cui uno strumento invalido continui a scrivere file su una partizione o un volume.
  • Se necessario, i controlli del filesystem impiegheranno meno tempo, in quanto possono essere fatti in parallelo (benché questo vantaggio sia maggiore con i dischi multipli piuttosto che con le sole partizioni multiple).
  • La sicurezza può essere migliorata montando alcune partizioni o volumi in modalità di sola lettura, nosuid (ignora i bit setuid), noexec (ignora i bit eseguibili), ecc.


Tuttavia, anche avere partizioni multiple presenta degli svantaggi. Se il sistema non viene appropriatamente configurato potrebbe avere molto spazio libero su una partizione e niente più spazio su un'altra. Un altro aspetto noioso è che partizioni separate - specialmente per i punti di montaggio importanti come /usr/ o /var/ - richiedono spesso che l'amministratore avvii il sistema con un initramfs per montare la partizione, prima che altri script all'avvio vengano eseguiti. Non sempre si verifica questo caso, quindi i risultati possono variare.

C'è anche un limite di 15 partizioni per SCSI e SATA a meno che il disco non usi una configurazione GPT.

Note
If you intend to uses Systemd, /usr/ must be available on boot, either as part of the root filesystem or mounted via an initramfs.

Riguardo lo spazio di swap?

Non c'è un valore perfetto per la partizione di swap. Lo scopo dello spazio di swap è quello di fornire, tramite disco, memoria al kernel quando la memoria interna (RAM) è sotto pressione. Uno spazio di swap permette al kernel di spostare le pagine di memoria, che non verranno utilizzate entro breve tempo, sul disco (swap o spaginazione), liberando memoria. Ovviamente, se quella memoria torna improvvisamente necessaria, queste pagine vengono rimesse nella memoria (paginazione), ciò richiederà un po' di tempo (dato che i dischi sono molto lenti, se paragonati alla memoria interna).

Quando il sistema non esegue applicazioni che occupano molta memoria oppure se il sistema ha tantissima memoria disponibile, allora è probabile che non serva molto spazio di swap. Comunque, lo spazio di swap è usato anche per scriverci tutta la memoria in caso di ibernazione. Se il sistema deve andare in ibernazione, allora è richiesto uno spazio di swap più grande, spesso pari ad almeno la quantità di memoria installata sul sistema.


Uso di UEFI

Quando si installa Gentoo su un sistema che utilizza UEFI per avviare il sistema operativo (invece di BIOS), allora è importante creare una Partizione di Sistema EFI (ESP). Le istruzioni per parted di seguito contengono i puntatori necessari per gestire questa operazione correttamente.

La partizione ESP deve essere una variante di FAT (talvolta mostrata come vfat sui sistemi Linux). Le specifiche UEFI ufficiali dichiarano che i filesystem FAT12, 16 o 32 vengono riconosciuti dal firmware UEFI, benché sia raccomandato FAT32 per la ESP. Procedere con la formattazione della ESP in FAT32:

root #mkfs.fat -F 32 /dev/sda2
Importante
Se non viene usata una variante FAT per l'ESP, non è garantito che il firmware UEFI di sistema trovi il bootloader (o il kernel Linux) e probabilmente non sarà in grado di avviare il sistema!


Cos'è la partizione di avvio BIOS?

Una partizione di avvio BIOS è una partizione molto piccola (da 1 a 2 MB) in cui i bootloader come GRUB2 possono inserire dati aggiuntivi se non riescono a stare nello spazio allocato (poche centinaia di byte nel caso di MBR) e se non possono stare altrove.


Alternativa: Uso di fdisk per partizionare il disco

La seguente parte spiega come impostare le partizioni secondo l'esempio usando fdisk. Lo schema delle partizioni d'esempio menzionato prima:

Partizione Descrizione
/dev/sda1 Partizione di avvio BIOS
/dev/sda2 Partizione di avvio
/dev/sda3 Partizione di swap
/dev/sda4 Partizione radice (root)

Modificare lo schema di partizionamento in base alle proprie personali preferenze.

Visualizzare lo schema delle partizioni correnti con fdisk

fdisk è un famoso e potente strumento per dividere un disco in partizioni. Lanciare fdisk per il disco (nel nostro esempio usiamo /dev/sda):

root #fdisk /dev/sda

Usare il tasto p per visualizzare l'attuale configurazione delle partizioni sul disco:

Command (m for help):p
Disk /dev/sda: 240 heads, 63 sectors, 2184 cylinders
Units = cylinders of 15120 * 512 bytes
  
   Device Boot    Start       End    Blocks   Id  System
/dev/sda1   *         1        14    105808+  83  Linux
/dev/sda2            15        49    264600   82  Linux swap
/dev/sda3            50        70    158760   83  Linux
/dev/sda4            71      2184  15981840    5  Extended
/dev/sda5            71       209   1050808+  83  Linux
/dev/sda6           210       348   1050808+  83  Linux
/dev/sda7           349       626   2101648+  83  Linux
/dev/sda8           627       904   2101648+  83  Linux
/dev/sda9           905      2184   9676768+  83  Linux

Questo particolare disco è stato configurato per ospitare 7 filesystem Linux (ciascuno con una corrispondente partizione elencata come "Linux") e una partizione di swap (indicata con "Linux swap").

Rimuovere tutte le partizioni con fdisk

Type g to create a new GPT disklabel on the disk; this will remove all existing partitions.

Command (m for help):g
Created a new GPT disklabel (GUID: 87EA4497-2722-DF43-A954-368E46AE5C5F).

Prima rimuovere tutte le partizioni esistenti dal disco. Digitare d per eliminare una partizione. Per esempio, per eliminare un'esistente /dev/sda1:

Command (m for help):d
Partition number (1-4): 1

La partizione è ora programmata per l'eliminazione. Non sarà più mostrata quando si richiede l'elenco delle partizioni (p), comunque non sarà effettivamente eliminata finché i cambiamenti non saranno salvati. Ciò permette agli utenti di annullare l'operazione se è stato commesso qualche errore - in tal caso, digitare subito q e premere Enter così la partizione non sarà eliminata.

Digitare nuovamente p per visualizzare un elenco delle partizioni e premere d seguito dal numero della partizione da eliminare. Alla fine, la tabella delle partizioni sarà vuota:

Command (m for help):p
Disk /dev/sda: 30.0 GB, 30005821440 bytes
240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 = 7741440 bytes
  
Device Boot    Start       End    Blocks   Id  System

Ora che la tabella delle partizioni risulta vuota, anche se solo nella memoria, siamo pronti per creare le nuove partizioni.

Creare la partizione di avvio BIOS

Per prima cosa si crei una piccola partizione di avvio per il BIOS. Digitare n per creare una nuova partizione, quindi p per selezionare una partizione primaria, seguito da 1 per selezionare la prima partizione primaria. Quando viene richiesto il settore di inizio, assicurarsi che inizi dal 2048 (necessario per il boot loader) e premere Enter. Quando viene richiesto il settore finale, digitare +2M per creare una partizione grande 2 MByte:

Command (m for help):n
Command action
  e   extended
  p   primary partition (1-4)
p
Partition number (1-4): 1
First sector (64-10486533532, default 64): 2048
Last sector, +sectors +size{M,K,G} (4096-10486533532, default 10486533532): +2M

Segnare la partizione per gli scopi di UEFI:

Command (m for help):t
Selected partition 1
Hex code (type L to list codes): 4
Changed system type of partition 1 to 4 (BIOS boot)

Creare la partizione di swap

Per creare una partizione di swap: digitare n per creare una nuova partizione, poi p per dire a fdisk di creare una partizione primaria. Digitare 3 per creare una terza partizione primaria, /dev/sda3. Quando viene richiesto il settore di inizio, premere Enter. Quando viene richiesto il settore finale, digitare +512M (o qualsiasi altra grandezza sia necessaria per lo spazio di swap) così da creare una partizione grande 512 MB.

Creare la partizione di avvio

Fatto tutto questo, digitare t per impostare il tipo di partizione, 3 per selezionare la partizione appena creata e poi digitare 82 per impostare il tipo di partizione "Linux Swap".

Command (m for help):t
Partition number (1,2, default 2): 2
Partition type (type L to list all types): 19
 
Changed type of partition 'Linux filesystem' to 'Linux swap'.

Creare la partizione radice

Infine, per creare la partizione radice (root), digitare n per creare una nuova partizione, quindi p per indicare a fdisk di creare una partizione primaria. Poi digitare 4 per creare la quarta partizione primaria, /dev/sda4. Quando viene richiesto il settore di inizio, premere Enter. Quando viene richiesto il settore finale, premere Enter per creare una partizione che occupi il rimanente spazio su disco. Dopo aver completato questi passaggi, digitando p si dovrebbe vedere una tabella delle partizioni simile a questa:

Command (m for help):p
Disk /dev/sda: 30.0 GB, 30005821440 bytes
240 heads, 63 sectors/track, 3876 cylinders
Units = cylinders of 15120 * 512 = 7741440 bytes
  
   Device Boot    Start       End    Blocks   Id  System
/dev/sda1             1         3      5198+  ef  EFI (FAT-12/16/32)
/dev/sda2   *         3        14    105808+  83  Linux
/dev/sda3            15        81    506520   82  Linux swap
/dev/sda4            82      3876  28690200   83  Linux

Salvare lo schema delle partizioni

Per salvare la configurazione delle partizioni e uscire da fdisk, premere w.

Command (m for help):w

Ora che le partizioni sono state create, si deve procedere alla creazione di un filesystem su ciascuna di esse.

Partitioning the disk with MBR for BIOS / legacy boot

The following explains how to create the example partition layout for a MBR / BIOS legacy boot installation. The example partition layout mentioned earlier is now:

Partition Description
/dev/sda2 Boot partition
/dev/sda2 Swap partition
/dev/sda3 Root partition

Change the partition layout according to personal preference.

Viewing the current partition layout

Fire up fdisk against the disk (in our example, we use /dev/sda):

root #fdisk /dev/sda

Use the p key to display the disk's current partition configuration:

Command (m for help):p
Disk /dev/sda: 28.89 GiB, 31001149440 bytes, 60549120 sectors
Disk model: DataTraveler 2.0
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: gpt
Disk identifier: 21AAD8CF-DB67-0F43-9374-416C7A4E31EA
 
Device        Start      End  Sectors  Size Type
/dev/sda1      2048   526335   524288  256M EFI System
/dev/sda2    526336  2623487  2097152    1G Linux swap
/dev/sda3   2623488 19400703 16777216    8G Linux filesystem
/dev/sda4  19400704 60549086 41148383 19.6G Linux filesystem

This particular disk was until now configured to house two Linux filesystems (each with a corresponding partition listed as "Linux") as well as a swap partition (listed as "Linux swap"), using a GPT table.

Creating a new disklabel / removing all partitions

Type o to create a new MBR disklabel (here also named DOS disklabel) on the disk; this will remove all existing partitions.

Command (m for help):o
Created a new DOS disklabel with disk identifier 0xe04e67c4.
The device contains 'gpt' signature and it will be removed by a write command. See fdisk(8) man page and --wipe option for more details.

For an existing DOS disklabel (see the output of p above), alternatively consider removing the existing partitions one by one from the disk. Type d to delete a partition. For instance, to delete an existing /dev/sda1:

Command (m for help):d
Partition number (1-4): 1

The partition has now been scheduled for deletion. It will no longer show up when printing the list of partitions (p, but it will not be erased until the changes have been saved. This allows users to abort the operation if a mistake was made - in that case, type q immediately and hit Enter and the partition will not be deleted.

Repeatedly type p to print out a partition listing and then type d and the number of the partition to delete it. Eventually, the partition table will be empty:

Command (m for help):p
Disk /dev/sda: 28.89 GiB, 31001149440 bytes, 60549120 sectors
Disk model: DataTraveler 2.0
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xe04e67c4

Now we're ready to create the partitions.

Creating the boot partition

First, create a small partition which will be mounted as /boot. Type n to create a new partition, followed by p for a primary partition and 1 to select the first primary partition. When prompted for the first sector, make sure it starts from 2048 (which may be needed for the boot loader) and hit Enter. When prompted for the last sector, type +256M to create a partition 256 Mbyte in size:

Command (m for help):n
Partition type
   p   primary (0 primary, 0 extended, 4 free)
   e   extended (container for logical partitions)
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-60549119, default 2048): 
Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-60549119, default 60549119): +256M
 
Created a new partition 1 of type 'Linux' and of size 256 MiB.

Creating the swap partition

Next, to create the swap partition, type n to create a new partition, then p, then type 2 to create the second primary partition, /dev/sda2. When prompted for the first sector, hit Enter. When prompted for the last sector, type +4G (or any other size needed for the swap space) to create a partition 4GB in size.

Command (m for help):n
Partition type
   p   primary (1 primary, 0 extended, 3 free)
   e   extended (container for logical partitions)
Select (default p): p
Partition number (2-4, default 2): 2
First sector (526336-60549119, default 526336): 
Last sector, +/-sectors or +/-size{K,M,G,T,P} (526336-60549119, default 60549119): +4G
 
Created a new partition 2 of type 'Linux' and of size 4 GiB.

After all this is done, type t to set the partition type, 2 to select the partition just created and then type in 82 to set the partition type to "Linux Swap".

Command (m for help):t
Partition number (1,2, default 2): 2
Hex code (type L to list all codes): 82

Changed type of partition 'Linux' to 'Linux swap / Solaris'.

Creating the root partition

Finally, to create the root partition, type n to create a new partition. Then type p and 3 to create the third primary partition, /dev/sda3. When prompted for the first sector, hit Enter. When prompted for the last sector, hit Enter to create a partition that takes up the rest of the remaining space on the disk. After completing these steps, typing p should display a partition table that looks similar to this:

Command (m for help):p
Disk /dev/sda: 28.89 GiB, 31001149440 bytes, 60549120 sectors
Disk model: DataTraveler 2.0
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0xe04e67c4
 
Device     Boot   Start      End  Sectors  Size Id Type
/dev/sda1          2048   526335   524288  256M 83 Linux
/dev/sda2        526336  8914943  8388608    4G 82 Linux swap / Solaris
/dev/sda3       8914944 60549119 51634176 24.6G 83 Linux

Saving the partition layout

To save the partition layout and exit fdisk, type w.

Command (m for help):w

Now it is time to put filesystems on the partitions.



Creazione dei file system

Introduzione

Una volta create le partizioni, è ora di inserirci un filesystem. Nella sezione successiva vengono descritti i file system supportati da Linux. I lettori che sanno già quale filesystem usare possono continuare con la sezione Applicare un filesystem ad una partizione. Gli altri lettori dovrebbero continuare a leggere per comprendere meglio i filesystem disponibili...

Filesystem

Sono disponibili numerosi filesystem. Alcuni di essi sono ritenuti stabili sull'architettura x86 - è consigliabile informarsi sui filesystem e sul loro supporto, prima di selezionarne uno più sperimentale da usare su partizioni importanti.

btrfs
È un filesystem di nuova generazione che fornisce molte caratteristiche avanzate, come la possibilità di creare istantanee, l'auto-riparazione tramite checksum, la compressione trasparente, i sottovolumi e il RAID integrato. Alcune distribuzioni hanno iniziato ad offrirlo come opzione standard, ma non è pronto per la produzione. Sono frequenti i rapporti di corruzione del filesystem. I suoi sviluppatori spingono la gente ad utilizzare la versione più recente del kernel, perché quelle più vecchie è noto che causino problemi. Così è stato per anni ed è troppo presto per dire se le cose sono cambiate. Le correzioni dei problemi di corruzione raramente vengono trasferite sui kernel più vecchi. Si proceda con cautela quando si utilizza questo filesystem!
ext2
È l'effettivo e collaudato filesystem di Linux, ma non ha il journaling dei metadati, il ché significa che i controlli di routine del filesystem ext2 effettuati all'avvio possono richiedere molto tempo. Ormai esiste una scelta piuttosto ampia di filesystem con journaling, la cui consistenza può essere controllata molto velocemente e sono infatti generalmente preferiti rispetto alle controparti senza journaling. I filesystem con journaling prevengono lunghi ritardi qualora il sistema si avvii con il filesystem in uno stato inconsistente (errori di coerenza).
ext3
È la versione con journaling del filesystem ext2, che fornisce il journaling dei metadati per un ripristino veloce in aggiunta ad altre modalità migliorate di journaling come quello a dati completi e a dati ordinati. Usa un indice HTree che permette alte prestazioni in quasi tutte le situazioni. In breve, ext3 è un filesystem molto buono e affidabile.
ext4
Inizialmente creato come un derivato di ext3, ext4 porta nuove caratteristiche, miglioramenti delle prestazioni e rimozione dei limiti delle dimensioni con lievi modifiche al formato su disco. Può ospitare volumi fino a 1 EB e con una dimensione massima dei file di 16 TB. Invece della classica allocazione a blocchi bitmap di ext2-3, ext4 utilizza le estensioni, che migliorano le prestazioni con file grandi e riducono la frammentazione. Ext4 fornisce anche algoritmi di allocazione dei blocchi più sofisticati (allocazione ritardata e multiblocco) dando ai driver del filesystem più modi per ottimizzare la distribuzione dei dati su disco. Ext4 è il filesystem raccomandato per tutti gli utilizzi e per tutte le piattaforme.
f2fs
Il Flash-Friendly File System fu originariamente creato da Samsung per essere usato con la memoria flash NAND. Nel secondo quadrimestre del 2016, questo filesystem era considerato ancora immaturo, ma è una scelta decente quando si installa Gentoo su microSD, dischi USB, o altri dispositivi di memoria basati su flash.
JFS
È il filesystem ad alte prestazioni di IBM. JFS è un filesystem leggero, veloce e affidabile basato su B+tree con buone prestazioni in varie condizioni.
ReiserFS
È un filesystem con journaling basato su B+tree che ha delle buone prestazioni complessive, specialmente quando si ha a che fare con molti piccoli file al costo di più cicli di CPU. ReiserFS sembra essere meno mantenuto rispetto ad altri filesystem.
XFS
È un filesystem con journaling dei metadati che fornisce un robusto insieme di caratteristiche ed è ottimizzato per la scalabilità. XFS sembra essere meno indulgente in caso di vari problemi hardware.
vfat
Anche conosciuto come FAT32, è supportato da Linux ma non supporta alcuna configurazione dei permessi. È principalmente usato per interoperabilità con altri sistemi operativi (principalmente Microsoft Windows) ma è anche una necessità per alcuni firmware di sistema (come UEFI).
NTFS
Il filesystem "New Technology" è quello principale su Microsoft Windows. Analogamente a vfat, non memorizza le impostazioni dei permessi o gli attributi estesi necessari ai sistemi BSD o Linux affinché funzionino correttamente, di conseguenza non può essere usato come filesystem radice (root). Dovrebbe essere usato solamente per l'interoperabilità con i sistemi Microsoft Windows (si noti l'enfasi su solamente).

Applicare un filesystem ad una partizione

Per creare un filesystem su una partizione o su un volume, ci sono strumenti avviabili dallo spazio utente per ogni possibile filesystem. Cliccare sul nome del filesystem nella tabella sottostante per informazioni aggiuntive su ciascun filesystem:

Filesystem Comando di creazione Sul CD minimale? Pacchetto
btrfs mkfs.btrfs sys-fs/btrfs-progs
ext2 mkfs.ext2 sys-fs/e2fsprogs
ext3 mkfs.ext3 sys-fs/e2fsprogs
ext4 mkfs.ext4 sys-fs/e2fsprogs
f2fs mkfs.f2fs sys-fs/f2fs-tools
jfs mkfs.jfs sys-fs/jfsutils
reiserfs mkfs.reiserfs sys-fs/reiserfsprogs
xfs mkfs.xfs sys-fs/xfsprogs
vfat mkfs.vfat sys-fs/dosfstools
NTFS mkfs.ntfs sys-fs/ntfs3g

Per esempio, per avere la partizione boot (/dev/sda2) in ext2 e la partizione root (/dev/sda4) in ext4 come nello schema delle partizioni d'esempio, si devono usare i seguenti comandi:

root #mkfs.ext2 /dev/sda2
root #mkfs.ext4 /dev/sda4

Quando si usa ext2, ext3 o ext4 su una piccola partizione (minore di 8GB), allora il filesystem deve essere creato con le opzioni appropriate per riservare abbastanza inode. L'applicazione mke2fs mkfs.ext2 usa l'impostazione "bytes-per-inode" per calcolare quanti inode dovrebbe avere un filesystem. Su partizioni più piccole, è consigliato aumentare il numero di inode calcolati.

root #mkfs.ext2 -T small /dev/<dispositivo>

Questa scelta generalmente quadruplica il numero di inode per un certo filesystem poiché i suoi "bytes-per-inode" anziché uno ogni 16kB diventano uno ogni 4kB. Ciò può essere ulteriormente modificato specificando la proporzione:

Ora si devono creare i filesystem sulle partizioni o i volumi logici appena creati.

Attivazione della partizione di swap

mkswap è il comando che viene usato per inizializzare la partizione di swap:

root #mkswap /dev/sda3

Per attivare la partizione di swap, usare swapon:

root #swapon /dev/sda3

Creare ed attivare lo swap con i comandi sopra menzionati.

Montaggio della partizione di root

Ora che le partizioni sono inizializzate ed ospitano un filesystem, è tempo di montare quelle partizioni. Usare il comando mount, ma non dimenticarsi di creare le directory (cartelle) di montaggio necessarie su cui montare ogni partizione creata. Nell'esempio è riportato come montare la partizione di root:

root #mount /dev/sda4 /mnt/gentoo
Nota
Se è necessario che /tmp/ risieda su una partizione separata, assicurarsi di cambiare i suoi permessi dopo averla montata:
root #chmod 1777 /mnt/gentoo/tmp
Ciò è valido anche per /var/tmp.

Più avanti nel manuale, il filesystem proc (un'interfaccia virtuale fornita dal kernel) ed altri pseudo-filesystem del kernel verranno montati. Però prima è necessario Installare i file di installazione di Gentoo.