Handbook:SPARC/Installation/Disks

From Gentoo Wiki
Jump to:navigation Jump to:search
This page is a translated version of the page Handbook:SPARC/Installation/Disks and the translation is 100% complete.
Other languages:
Deutsch • ‎English • ‎español • ‎français • ‎polski • ‎русский • ‎українська • ‎中文(中国大陆)‎ • ‎日本語 • ‎한국어
SPARC Handbook
Установка
Об установке
Выбор подходящего источника для установки
Настройка сети
Подготовка дисков
Установка stage3
Установка базовой системы
Настройка ядра
Настройка системы
Установка системных утилит
Настройка загрузчика
Завершение
Работа с Gentoo
Введение в Portage
USE-флаги
Возможности Portage
Система сценариев инициализации
Переменные окружения
Работа с Portage
Файлы и каталоги
Переменные
Смешение ветвей программного обеспечения
Дополнительные утилиты
Дополнительные репозитории пакетов
Расширенные возможности
Настройка сети
Начальная настройка
Расширенная настройка
Модульное построение сети
Беспроводная сеть
Добавляем функциональность
Динамическое управление


Введение в блочные устройства

Блочные устройства

Теперь взглянем на аспекты работы Gentoo Linux и Linux в общем, связанные с дисковой подсистемой, включая блочные устройства, разделы и файловые системы Linux. Как только основные понятия о дисках и файловых системах будут изучены, можно будет приступать к созданию разделов и файловых систем для установки.

Для начала, рассмотрим блочные устройства. Устройства SCSI и Serial ATA обозначаются как /dev/sda, /dev/sdb, /dev/sdc и так далее. На более современных компьютерах твердотельные накопители NVMe на базе PCI Express имеют дескриптор вида /dev/nvme0n1, /dev/nvme0n2 и так далее.

Следующая таблица поможет определить необходимый тип блочного устройства в системе:

Тип устройства Дескриптор устройства по умолчанию Примечания и полезные сведения
NVM Express (NVMe) /dev/nvme0n1 Передовая на данный момент технология твердотельных накопителей. Устройства NVMe подключаются к шине PCI Express и обладают наиболее быстрой скоростью передачи блочных данных, доступной на рынке. Системы образца 2014 года и новее могут иметь поддержку устройств NVMe.
SATA, SAS, SCSI или USB flash /dev/sda Данный тип устройств стал доступным примерно с 2007 года и встречается до сих пор, являясь, пожалуй, самым используемым типом в Linux. Устройства могут подключаться через шины SATA, SCSI или USB в виде устройства блочного хранилища.
MMC, eMMC и SD /dev/mmcblk0 Устройства embedded MMC, SD-карты и другие типы карт памяти могут использоваться для хранения данных. Однако не все системы могут позволить загружаться с данного типа устройств. Не рекомендуется использовать данные устройства для установки Linux; лучше используйте их по прямому назначению — для переноса файлов. Также их можно использовать для кратковременного резервного копирования.
IDE/PATA /dev/hda Так старые драйверы ядра Linux отображают диски IDE/Parallel ATA, подключённые к шине IDE. Строго говоря, подобный тип устройств постепенно исчезает из компьютеров с 2003 года, когда компьютерная индустрия переключилась на SATA. Большинство систем с одним контроллером IDE могут поддерживать до четырёх устройств (hda-hdd)
Альтернативное именование для этих устаревших интерфейсов включают в себя Extended IDE (EIDE) и Ultra ATA (UATA).

Данные блочные устройства представляют абстрактный интерфейс к диску. Пользовательские приложения могут использовать их для взаимодействия с диском, не заботясь о том, какой это диск — SATA, SCSI или какой-либо ещё. Программа просто адресует пространство на диске как совокупность следующих друг за другом 4096-байтных (4K) блоков с произвольным доступом.


Разделы

Несмотря на то, что теоретически возможно использовать весь диск для размещения системы Linux, это почти никогда не делается на практике. Вместо этого, блочное устройство разбивается на меньшие, более управляемые блочные устройства. Они называются разделами или «слайсами» (slice).

Первый раздел на первом SCSI-диске — это /dev/sda1, второй — /dev/sda2 и так далее.

На системах Sun третий раздел выделен отдельно и используется как специальный слайс «whole disk». Этот раздел не должен содержать какой-либо файловой системы.

Пользователи, привыкшие к схеме разделов в стиле DOS, должны отметить, что метки дисков Sun не имеют «основных» или «расширенных» разделов. Вместо этого на каждом устройстве может располагаться до восьми разделов, при этом третий зарезервирован и не может использоваться.

Разработка схемы разделов

Сколько разделов и насколько больших?

Расположение разделов на диске очень сильно зависит от потребностей системы. Если в ней будет много пользователей, рекомендуется разместить /home в виде отдельного раздела, что улучшит безопасность и значительно упростит резервное копирование (а также другие операции сопровождения). Если Gentoo устанавливается для использования в роли почтового сервера, следует отделить /var, так как вся почта хранится в каталоге /var. Для игровых серверов потребуется отдельный раздел /opt, так как большинство игровых серверов устанавливается туда. Причины выделения те же, что и для каталога /home: безопасность, резервное копирование и сопровождение.

В большинстве случаев /usr и /var должны быть достаточно большого размера. В /usr хранится большинство приложений, доступных системе, а также исходные коды ядра Linux (в каталоге /usr/src). По умолчанию в /var хранится репозиторий пакетов Gentoo (расположенный в /var/db/repos/gentoo), который, в зависимости от файловой системы, займёт около 650 МиБ дискового пространства. Оценка этого пространства не включает каталоги /var/cache/distfiles и /var/cache/binpkgs, в которых будут скапливаться архивы исходных кодов и (не обязательно) двоичных пакетов, которые будут формироваться в самой системе.

Сколько именно и какого объёма разделов нужно системе — всё зависит от сочетания различных факторов, которые необходимо принимать во внимание. Наличие отдельных разделов или томов имеет следующие плюсы:

  • Можно выбрать наиболее подходящую файловую систему для каждого раздела или тома.
  • Свободное место во всей системе не закончится внезапно из-за того, что одна-единственная сбойная программа постоянно записывает файлы в раздел или том.
  • Необходимая проверка файловых систем будет занимать меньше времени, так как проверка разных разделов может выполняться параллельно (еще больший выигрыш времени дает использование нескольких физических дисков).
  • Можно повысить безопасность системы, монтируя часть разделов в режиме только для чтения, nosuid (игнорируется бит setuid), noexec (игнорируется бит исполнения) и так далее.

Однако у множества разделов также есть недостатки:

  • Если они не настроены правильно, может получиться так, что будет огромное количество свободного места на одном разделе и нехватка на другом.
  • Другой проблемой является то, что отдельные разделы, особенно для важных точек монтирования, например /usr/ или /var/, часто требуют загрузки initramfs, чтобы смонтировать разделы прежде, чем запустятся другие загрузочные сценарии. Это не всегда является проблемой, так что результаты могут быть разные.
  • Также существует лимит в 15 разделов для SCSI и SATA, если только на диске не используются метки GPT.

Что по поводу пространства подкачки?

Не существует идеального значения для раздела подкачки. Целью пространства подкачки является предоставление дискового пространства ядру в условиях активного использования оперативной памяти. Пространство подкачки позволяет ядру переносить на диск страницы памяти, которые не будут использоваться в ближайшее время, освобождая память (swap или page-out). Конечно, если эта память вдруг неожиданно понадобится, эти страницы должны быть помещены обратно в память (page-in), что займет некоторое время (так как диски — это очень медленные устройства по сравнению с оперативной памятью).

Если на системе не требуется запускать приложения, требовательные к памяти, либо изначально доступно очень много памяти, то, скорее всего, необходимости в пространстве подкачки нет. Однако раздел подкачки также используется для сохранения всей памяти в случае перехода системы в спящий режим. Если планируется использовать этот режим, то нужно пространство подкачки, хотя бы равное количеству оперативной памяти, которое есть в системе.


Схема разделов по умолчанию

The table below suggests a suitable starting point for most systems. Note that this is only an example, so feel free to use different partitioning schemes.

Заметка
Обычно для SPARC не рекомендуется создавать отдельный раздел /boot, это значительно усложняет конфигурацию начального загрузчика.
Partition Filesystem Size Mount Point Description
/dev/sda1 ext4 <2 GB / Root partition. For SPARC64 systems with OBP versions 3 or less, this must be less than 2 GB in size, and the first partition on the disk. More recent OBP versions can deal with larger root partitions and, as such, can support having /usr, /var and other locations on the same partition.
/dev/sda2 swap 512 MB none Swap partition. For bootstrap and certain larger compiles, at least 512 MB of RAM (including swap) is required.
/dev/sda3 none Whole disk none Whole disk partition. This is required on SPARC systems.
/dev/sda4 ext4 at least 2 GB /usr /usr partition. Applications are installed here. By default this partition is also used for Portage data (which takes around 500 MB excluding source code).
/dev/sda5 ext4 at least 1 GB /var /var partition. Used for program-generated data. By default Portage uses this partition for temporary space whilst compiling. Certain larger applications such as Mozilla and LibreOffice.org can require over 1 GB of temporary space here when building.
/dev/sda6 ext4 remaining space /home /home partition. Used for users' home directories.

Использование fdisk для создания разделов на диске

The following parts explain how to create the example partition layout described previously, namely:

Раздел Описание
/dev/sda1 /
/dev/sda2 swap
/dev/sda3 whole disk slice
/dev/sda4 /usr
/dev/sda5 /var
/dev/sda6 /home

Change the partition layout as required. Remember to keep the root partition entirely within the first 2 GB of the disk for older systems. There is also a 15-partition limit for SCSI and SATA.

Запуск fdisk

Запустите fdisk, указав диск в качестве аргумента:

root #fdisk /dev/sda
Command (m for help):

Нажмите p, чтобы увидеть уже существующие разделы нажмите:

Command (m for help):p
Disk /dev/sda (Sun disk label): 64 heads, 32 sectors, 8635 cylinders
Units = cylinders of 2048 * 512 bytes
  
   Device Flag    Start       End    Blocks   Id  System
/dev/sda1             0       488    499712   83  Linux native
/dev/sda2           488       976    499712   82  Linux swap
/dev/sda3             0      8635   8842240    5  Whole disk
/dev/sda4           976      1953   1000448   83  Linux native
/dev/sda5          1953      2144    195584   83  Linux native
/dev/sda6          2144      8635   6646784   83  Linux native

Note the Sun disk label in the output. If this is missing, the disk is using the DOS-partitioning, not the Sun partitioning. In this case, use s to ensure that the disk has a Sun partition table:

Command (m for help):s
Building a new sun disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content won't be recoverable.
  
Drive type
   ?   auto configure
   0   custom (with hardware detected defaults)
   a   Quantum ProDrive 80S
   b   Quantum ProDrive 105S
   c   CDC Wren IV 94171-344
   d   IBM DPES-31080
   e   IBM DORS-32160
   f   IBM DNES-318350
   g   SEAGATE ST34371
   h   SUN0104
   i   SUN0207
   j   SUN0327
   k   SUN0340
   l   SUN0424
   m   SUN0535
   n   SUN0669
   o   SUN1.0G
   p   SUN1.05
   q   SUN1.3G
   r   SUN2.1G
   s   IOMEGA Jaz
Select type (? for auto, 0 for custom): 0
Heads (1-1024, default 64): 
Using default value 64
Sectors/track (1-1024, default 32): 
Using default value 32
Cylinders (1-65535, default 8635): 
Using default value 8635
Alternate cylinders (0-65535, default 2): 
Using default value 2
Physical cylinders (0-65535, default 8637): 
Using default value 8637
Rotation speed (rpm) (1-100000, default 5400): 10000
Interleave factor (1-32, default 1): 
Using default value 1
Extra sectors per cylinder (0-32, default 0): 
Using default value 0

The right values can be found in the documentation of the hard disk itself. The 'auto configure' option does not usually work.

Удаление существующих разделов

It's time to delete any existing partitions. To do this, type d and hit Enter. Give the partition number to delete. To delete a pre-existing /dev/sda1, type:

Command (m for help):d
Partition number (1-4): 1

Do not delete partition 3 (whole disk). This is required. If this partition does not exist, follow the "Creating a Sun Disklabel" instructions above.

After deleting all partitions except the Whole disk slice,a partition layout similar to the following should show up:

Command (m for help):p
Disk /dev/sda (Sun disk label): 64 heads, 32 sectors, 8635 cylinders
Units = cylinders of 2048 * 512 bytes
  
   Device Flag    Start       End    Blocks   Id  System
/dev/sda3             0      8635   8842240    5  Whole disk

Создание корневого раздела

Next create the root partition. To do this, type n to create a new partition, then type 1 to create the partition. When prompted for the first cylinder, hit Enter. When prompted for the last cylinder, type +512M to create a partition 512 MB in size. Make sure that the entire root partition fits within the first 2 GB of the disk. The output of these steps is as follows:

Command (m for help):n
Partition number (1-8): 1
First cylinder (0-8635): (press Enter)
Last cylinder or +size or +sizeM or +sizeK (0-8635, default 8635): +512M

When listing the partitions (through p), the following partition printout is shown:

Command (m for help):p
Disk /dev/sda (Sun disk label): 64 heads, 32 sectors, 8635 cylinders
Units = cylinders of 2048 * 512 bytes
  
   Device Flag    Start       End    Blocks   Id  System
/dev/sda1             0       488    499712   83  Linux native
/dev/sda3             0      8635   8842240    5  Whole disk

Создание раздела подкачки

Next, let's create the swap partition. To do this, type n to create a new partition, then 2 to create the second partition, /dev/sda2 in our case. When prompted for the first cylinder, hit Enter. When prompted for the last cylinder, type +512M to create a partition 512 MB in size. After this, type t to set the partition type, 2 to select the partition just created and then type in 82 to set the partition type to "Linux Swap". After completing these steps, typing p should display a partition table that looks similar to this:

root #Command (m for help):
root #p
Disk /dev/sda (Sun disk label): 64 heads, 32 sectors, 8635 cylinders
Units = cylinders of 2048 * 512 bytes
  
   Device Flag    Start       End    Blocks   Id  System
/dev/sda1             0       488    499712   83  Linux native
/dev/sda2           488       976    499712   82  Linux swap
/dev/sda3             0      8635   8842240    5  Whole disk

Создание разделов usr, var и home

Finally, let's create the /usr, /var and /home partitions. As before, type n to create a new partition, then type 4 to create the third partition (we do not count the whole disk as being a partition), /dev/sda4 in our case. When prompted for the first cylinder, hit Enter. When prompted for the last cylinder, enter +2048M to create a partition 2 GB in size. Repeat this process for /dev/sda5 and sda6, using the desired sizes. When finished, the partition table will look similar to the following:

Command (m for help):p
Disk /dev/sda (Sun disk label): 64 heads, 32 sectors, 8635 cylinders
Units = cylinders of 2048 * 512 bytes
  
   Device Flag    Start       End    Blocks   Id  System
/dev/sda1             0       488    499712   83  Linux native
/dev/sda2           488       976    499712   82  Linux swap
/dev/sda3             0      8635   8842240    5  Whole disk
/dev/sda4           976      1953   1000448   83  Linux native
/dev/sda5          1953      2144    195584   83  Linux native
/dev/sda6          2144      8635   6646784   83  Linux native

Сохранение и выход

Сохраните разметку разделов и выйдите из fdisk, нажав w.

Command (m for help):w


Создание файловых систем

Введение

Теперь, когда разделы созданы, пора разместить на них файловые системы. В следующем разделе описаны различные поддерживаемые в Linux файловые системы. Те из читателей, кто уже знает, какую файловую систему будет использовать, могут продолжить с раздела Создание файловой системы. Другим стоит продолжить чтение, чтобы узнать о доступных вариантах…

Файловые системы

Linux поддерживает несколько десятков файловых систем, хотя для большинства из них необходимы достаточно веские причины их использовать. Лишь только некоторые из них можно считать стабильными на архитектуре sparc. Рекомендуется прочитать информацию о файловых системах и об их состоянии поддержки перед тем, как останавливать свой выбор на экспериментальных.

btrfs
Файловая система следующего поколения, обеспечивающая множество дополнительных функций, таких как мгновенные снимки, самовосстановление с помощью контрольных сумм, поддержка прозрачного сжатия, субтомов и интегрированный RAID. Ядра старше ветки 5.4 не обеспечивают безопасную работу btrfs, так как исправления наиболее серьёзных проблем стабильности появились только в более поздних ветках долговременной поддержки ядра. Ошибки с повреждением файловой системы довольно часты для старых версий ядра, особенно небезопасны и нестабильны версии старше 4.4. Повреждения файловой системы для ядер старше 5.4 обычно характерны при включении сжатия. RAID 5/6 и quota groups небезопасны для всех версий btrfs. Более того, btrfs может неявным образом нарушить работу с файловыми операциями с ошибкой ENOSPC (при этом df сообщает, что свободное место есть) из-за внутренней фрагментации (свободное место высчитывается из расчёта DATA + SYSTEM участков, но при этом этом не учитывается в участках METADATA). Также, единственная ссылка 4K на экстент 128M внутри btrfs может отображать свободное место, которое недоступно для использования. Всё это приводит к тому, что btrfs возвращает ENOSPC, а df говорит, что есть свободное пространство. Установка sys-fs/btrfsmaintenance и конфигурация сценариев на периодический запуск поможет сократить количество проблем с ENOSPC путём ребалансировки btrfs, но не устранит их окончательно. Некоторые системы могут никогда не получить ошибку ENOSPC, когда как другие будут встречать её часто. Если риск получения ошибки ENOSPC недопустим, следует использовать другую файловую систему. При использовании btrfs убедитесь, что не собираетесь использовать конфигурацию, которая известна своей нестабильностью. За исключением проблемы ENOSPC, информация о существующих проблемах btrfs в последних ветках ядра доступна на вики-странице состояния btrfs.
ext2
Это проверенная и надежная файловая система Linux, но она не обладает средствами журналирования метаданных, что означает, что проверка файловой системы ext2 при запуске может занимать довольно много времени. Существует достаточно широкий выбор журналируемых файловых систем нового поколения, целостность которых может быть проверена очень быстро, что является преимуществом перед нежурналируемыми системами. Журналирование файловой системы позволяет избежать долгих задержек при загрузке системы, а также избежать её нестабильного состояния.
ext3
Журналируемая версия файловой системы ext2, обеспечивающая журналирования метаданных для быстрого восстановления в дополнение к другим режимам журналирования, таким как журналирование всех данных и упорядоченных данных. В данной ФС используются индексы на базе деревьев хешей, что в большинстве случаев обеспечивает высокую производительность. Вкратце, ext3 — это очень хорошая и надёжная файловая система.
ext4
Изначально созданная как ответвление от ext3, ext4 реализует новые возможности, повышение производительности и устранение ограничений на размер раздела на диске ценой незначительного изменения формата данных на диске. Она может быть размером до 1 ЭБ, а максимальный размер файла может составлять 16 ТБ. Вместо классического ext2/3 блочного распределения ext4 использует экстенты, которые улучшают производительность при работе с большими файлами и уменьшают фрагментацию. Ext4 также обеспечивает более сложные алгоритмы распределения блоков (отложенное распределение и мультиблочное распределение), дающие драйверу файловой системы больше возможностей по оптимизации размещения данных на диске. Ext4 рекомендуется как универсальная файловая система для всех платформ.
f2fs
Файловая система (Flash-Friendly File System) была создана Samsung для использования на NAND-накопителях. По состоянию на 2 квартал 2016 года файловая система считается не завершенной, но она может быть достойным выбором при установке на microSD карту, USB-накопитель или другие накопители.
JFS
Высокопроизводительная журналируемая файловая система от IBM. JFS — это легкая, быстрая и надежная файловая система, основанная на двоичных деревьях с хорошей производительностью в различных условиях.
ReiserFS
Основанная на двоичных деревьях журналируемая файловая система с хорошей общей производительностью, особенно при работе с множеством мелких файлов ценой чутью больших затрат центрального процессора. ReiserFS версии 3 включена в ядро Linux, однако не рекомендуется использовать её для первичной установки системы Gentoo. Существуют более новые версии ReiserFS, но для своей работы они требуют дополнительных патчей ядра.
XFS
Файловая система с журналированием метаданных, которая поставляется с мощным набором функций и оптимизирована для масштабируемости. XFS менее снисходительно относится к различным аппаратным проблемам, однако непрерывно обновляется, обрастая новым возможностями.
VFAT
Так же известна как FAT32, поддерживается Linux, но не имеет поддержку стандартных файловых разрешений UNIX. В основном используется для взаимодействия с другими операционными системами (в основном Microsoft Windows и Apple OSX), но также необходима при использовании некоторых системных прошивок загрузчика (например, UEFI).
NTFS
New Technology Filesystem является основной файловой системой для Microsoft Windows начиная с NT 3.5. Как и vfat, она не сохраняет настройки UNIX разрешений и расширенные атрибуты, необходимые для нормальной работы BSD или Linux, поэтому её не следует использоваться в качестве корневой файловой системы. Её необходимо использовать только для взаимодействия с системами Microsoft Windows (обратите внимание на акцент слова только).

При использовании ext2, ext3 или ext4 на малых разделах (менее 8 ГиБ) файловая система должна быть создана с особыми параметрами для резервирования достаточного количества индексных дескрипторов (inodes). Приложение mke2fs (mkfs.ext2) использует настройки «bytes-per-inode» для вычисления количества необходимых дескрипторов. На небольших разделах рекомендуется увеличивать расчётное количество дескрипторов.

Для ext2, ext3 или ext4 может быть выполнена одна из следующих команд:

root #mkfs.ext2 -T small /dev/<device>
root #mkfs.ext3 -T small /dev/<device>
root #mkfs.ext4 -T small /dev/<device>

Данные команды учетверяют количество индексных дескрипторов для такой ФС, так как «bytes-per-inode» уменьшает количество байт на каждый дескриптор с 16 кб до 4 кб. Это соотношение может быть изменено в любую сторону с помощью команды:

root #mkfs.ext2 -i <ratio> /dev/<device>

Создание файловой системы

Для создания файловых систем на разделе или томе существуют пользовательские утилиты для каждого возможного типа файловой системы. Нажмите на имя файловой системы в таблице ниже для получения дополнительной информации о каждой файловой системе:

Файловая система Команда для создания Есть на минимальном CD? Пакет
btrfs mkfs.btrfs Да sys-fs/btrfs-progs
ext2 mkfs.ext2 Да sys-fs/e2fsprogs
ext3 mkfs.ext3 Да sys-fs/e2fsprogs
ext4 mkfs.ext4 Да sys-fs/e2fsprogs
f2fs mkfs.f2fs Да sys-fs/f2fs-tools
jfs mkfs.jfs Да sys-fs/jfsutils
reiserfs mkfs.reiserfs Да sys-fs/reiserfsprogs
xfs mkfs.xfs Да sys-fs/xfsprogs
vfat mkfs.vfat Да sys-fs/dosfstools
NTFS mkfs.ntfs Да sys-fs/ntfs3g

Например, чтобы создать корневой раздел (/dev/sda1) в ext4 при использовании структуры разделов из примера, используются следующие команды:


root #mkfs.ext4 /dev/sda1

Теперь создайте файловые системы на только что созданных томах (или логических разделах).

Активация раздела подкачки

Для инициализации разделов подкачки используется команда mkswap:

root #mkswap /dev/sda2

Чтобы активировать раздел подкачки, используйте swapon:

root #swapon /dev/sda2

Создайте и активируйте раздел подкачки командами выше.

Монтирование корневого раздела

Теперь, когда созданы разделы и размещённые на них файловые системы, настало время их смонтировать. Используйте команду mount, только не забудьте предварительно создать каталоги для монтирования каждого созданного раздела. В качестве примера мы смонтируем корневой раздела:

root #mount /dev/sda1 /mnt/gentoo
Заметка
Если /tmp/ находится на отдельном разделе, не забудьте после монтирования изменить права доступа:
root #chmod 1777 /mnt/gentoo/tmp
Это также справедливо для /var/tmp.

Позже в инструкции будут смонтированы файловая система proc (виртуальный интерфейс к ядру) и другие псевдофайловые системы ядра. Но сначала мы установим установочные файлы Gentoo.