Handbuch:IA64/Installation/Festplatten

From Gentoo Wiki
Jump to:navigation Jump to:search
This page is a translated version of the page Handbook:IA64/Installation/Disks and the translation is 100% complete.
IA64 Handbuch
Installation
Über die Installation
Auswahl des Mediums
Konfiguration des Netzwerks
Vorbereiten der Festplatte(n)
Installation des Stage Archivs
Installation des Basissystems
Konfiguration des Kernels
Konfiguration des Systems
Installation der Tools
Konfiguration des Bootloaders
Abschluss
Arbeiten mit Gentoo
Portage-Einführung
USE-Flags
Portage-Features
Initskript-System
Umgebungsvariablen
Arbeiten mit Portage
Dateien und Verzeichnisse
Variablen
Mischen von Softwarezweigen
Zusätzliche Tools
Eigener Portage-Tree
Erweiterte Portage-Features
Netzwerk-Konfiguration
Zu Beginn
Fortgeschrittene Konfiguration
Modulare Vernetzung
Drahtlose Netzwerke
Funktionalität hinzufügen
Dynamisches Management


Einführung in blockorientierte Geräte

Blockorientierte Geräte

Schauen wir uns die Festplatten-spezifischen Aspekte von Gentoo Linux und Linux im Allgemeinen an - insbesondere blockorientierte Geräte (Block Devices), Partitionen und Linux Dateisysteme. Wenn Sie die Vor- und Nachteile von Festplatten verstanden haben, können Sie Partitionen und Dateisysteme für die Installation erstellen.

Zu Beginn schauen wir uns blockorientierte Geräte an. SCSI- und SATA-Laufwerke haben Device-Namen wie: /dev/sda, /dev/sdb, /dev/sdc usw. Modernere Rechner können PCI-Express basierte NVMe Solid-State-Disks haben, die Device-Namen haben wie: /dev/nvme0n1, /dev/nvme0n2 usw.

Die folgende Tabelle soll Lesern dabei helfen herauszufinden, wo bestimmte Arten von blockorientierten Geräten zu finden sind:

Device-Typ Standard Device-Name Anmerkungen
IDE, SATA, SAS, SCSI, or USB flash /dev/sda Diese Device-Typen werden auf Hardware ab 2007 verwendet - und sind vermutlich die am häufigsten genutzten Device-Namen unter Linux. Diese Geräte werden als blockorientierter Speicher angeschlossen über den SATA bus, über SCSI und über USB. Beispielsweise wird die erste Partition des ersten SATA-Devices /dev/sda1 genannt.
NVM Express (NVMe) /dev/nvme0n1 The latest in solid state technology, NVMe drives are connected to the PCI Express bus and have the fastest transfer block speeds on the market. Systems from around 2014 and newer may have support for NVMe hardware. The first partition on the first NVMe device is called /dev/nvme0n1p1.
MMC, eMMC, and SD /dev/mmcblk0 embedded MMC devices, SD cards, and other types of memory cards can be useful for data storage. That said, many systems may not permit booting from these types of devices. It is suggested to not use these devices for active Linux installations; rather consider using them to transfer files, which is their design goal. Alternatively they could be useful for short-term backups.

Die oben genannten blockorientierten Geräte repräsentieren eine abstrakte Schnittstelle zur Festplatte. Benutzerprogramme können diese Block Devices nutzen, um mit der Festplatte zu interagieren, ohne sich darum sorgen zu müssen, ob die Festplatten über SATA, SCSI oder etwas anderem angebunden sind. Das Programm kann den Speicher auf der Festplatte einfach als eine Anhäufung zusammenhängender 4096-Byte (4k) Blöcke mit wahlfreiem Zugriff ansprechen.


Partitionen

Obwohl es theoretisch möglich wäre eine vollständige Festplatte zu nutzen um ein Linux-System unterzubringen, kommt das in der Praxis fast nie vor. Stattdessen werden komplette Festplatten Block Devices in kleinere, besser handhabbare Block Devices unterteilt. Auf IA64 Systemen werden diese Partitionen genannt.

Itanium Systeme verwenden zum Booten EFI, das Extensible Firmware Interface. Das Partitionstabellen-Format das EFI versteht wird GPT oder GUID Partition Table genannt. Das Partitionierungsprogramm das GPT versteht wird "parted" genannt, darum ist dies das Tool das wir unten verwenden. Darüber hinaus kann EFI nur FAT Dateisysteme lesen, deshalb ist dies das Format für die EFI Bootpartition. Dort installiert "elilo" den Kernel.

Erweiterte Speichermöglichkeit

Die IA64 Installations-CDs bieten Unterstützung für LVM2. LVM2 erhöht die Flexibilität, die das Partitionieren anbietet. Während der Installationsanleitungen konzentrieren wir uns auf "normale" Partitionen, aber es ist dennoch gut zu wissen, dass auch LVM2 unterstützt wird.


Ein Partitionsschema entwerfen

Wie viele Partitionen und wie groß?

Bei dem Design des Partitionsschemas sollten die Anforderungen an das System und an die Dateisysteme berücksichtigt werden. Wenn es viele Nutzer gibt, ist eine eigene Partition /home/ ratsam, da diese die Sicherheit erhöht und Backups und andere Wartungsarbeiten vereinfacht. Wenn Gentoo installiert wird, um als Mailserver zu dienen, dann sollte es eine eigene Partition /var/ geben, weil alle Mails im Verzeichnis /var/ gespeichert werden. Spiele-Server werden eine eigene Partition /opt/ besitzen, da die meiste Spiele-Server-Software dort installiert wird. Der Grund für diese Empfehlungen ist ähnlich wie für das /home/ Verzeichnis: Sicherheit, Backups und Wartung.

Bei den meisten Gentoo-Installationen sollten /usr/ und /var/ relativ groß sein. In /usr werden die Mehrzahl der Anwendungen und auch der Linux Kernel Quellcode gespeichert (unter /usr/src). Standardmäßig enthält /var/ das Gentoo ebuild Repository (unter /var/db/repos/gentoo), das alleine schon rund 650 MiB Plattenplatz benötigt. Diese Größenabschätzung enthält noch nicht den benötigten Plattenplatz für die Verzeichnisse /var/cache/distfiles und /var/cache/binpkgs, die sich im Laufe der Zeit mit Source-Code Dateien und (optional) mit Binärpaketen füllen werden - je nachdem, wann und wie sie dem System hinzugefügt werden.

Die Anzahl und Größe der Partitionen hängt vom Abwägen der Vor- und Nachteile und der Auswahl der besten Lösung für einen gegebenen Anwendungsfall ab. Separate Partitionen oder Volumes haben folgende Vorteile:

  • Sie können das performanteste Dateisystem für jede Partition oder jedes Volume wählen.
  • Dem Gesamtsystem kann der freie Speicherplatz nicht ausgehen, wenn ein fehlerhaftes Tool kontinuierlich Dateien auf eine Partition oder ein Volume schreibt.
  • Falls nötig, kann die Zeit für Dateisystemüberprüfungen reduziert werden, da mehrere Überprüfungen gleichzeitig durchgeführt werden können. (Dieser Vorteil kommt aber eher bei mehreren Festplatten, als bei mehreren Partitionen auf einer Festplatte zum Tragen.)
  • Sie können die Sicherheit erhöhen, indem Sie einige Partitionen oder Volumes "read-only", nosuid (setuid Flags werden ignoriert), noexec (executable Flags werden ignoriert) etc. einbinden.


Viele separate Partitionen können aber auch Nachteile haben:

  • Wenn diese schlecht an das System angepasst sind, kann es sein, dass eine Partition voll ist und auf einer anderen Partition noch viel freier Platz verfügbar ist.
  • Eine separate Partition für /usr/ kann es erforderlich machen, dass beim Booten ein initramfs verwendet wird, welches diese Partitionen vor der Ausführung anderer Boot-Skripte mountet. Das Erzeugen und Betreiben eines initramsfs ist nicht Teil dieses Handbuchs. Wir empfehlen Anfängern, für /usr/ keine eigene Partition zu verwenden.
  • Es gibt ein Limit von maximal 15 Partitionen für SCSI und SATA - es sei denn, der Datenträger nutzt GPT-Labels.
Hinweis
Installationen, die systemd als Dienst-und Init-System verwenden wollen, müssen /usr/ beim Booten verfügbar haben, entweder als Teil des Root-Dateisystems oder eingehängt über ein initramfs.

Was ist mit dem Swap-Speicher?

Es gibt keine perfekte Größe für den Swap-Speicher. Der Zweck von Swap-Speicher ist, Festplattenspeicherplatz für den Kernel bereitzuhalten, wenn der interne Speicher (RAM) knapp wird. Der Swap-Speicher erlaubt dem Kernel, Speicherseiten, auf die vermutlich nicht bald zugegriffen wird, auf die Platte auszulagern (Swap oder Page-Out). Dadurch kann Arbeitsspeicher im RAM für den aktuell laufenden Prozess freigemacht werden. Werden die auf die Festplatte ausgelagerten Speicherseiten (Pages) jedoch plötzlich benötigt, müssen diese Seiten wieder zurück in den Arbeitsspeicher geladen werden (Page-In). Dies dauert jedoch erheblich länger, als wenn die Daten direkt aus dem RAM gelesen werden könnten (da Festplatten verglichen mit Arbeitsspeicher sehr langsam sind).

Wenn auf einem System keine speicherintensiven Anwendungen ausgeführt werden oder das System viel RAM zur Verfügung hat, benötigt es vermutlich nicht viel Swap-Speicher. Wenn jedoch der Ruhezustand "Hibernation" verwendet werden soll, wird der Swap-Speicher verwendet, um den gesamten Inhalt des Hauptspeichers (RAM) zu sichern (dieser Ruhezustand wird bei Desktop- und Laptop-Systemen häufiger verwendet, als bei Servern). Wenn das System den Ruhezustand "Hibernation" unterstützen soll, muss der Swap-Speicher so groß wie oder größer als der Hauptspeicher (RAM) sein.

Als generelle Regel gilt: der Swap-Speicher sollte zwei Mal so groß sein wie der Arbeitsspeicher (RAM). Auf Systemen mit mehreren (rotierenden) Festplatten ist es sinnvoll, eine Swap-Partition auf jeder Festplatte einzurichten, damit Schreib-/Lese-Operationen parallel ausgeführt werden können. Je schneller auf einen Festplatte zugegriffen werden kann, desto schneller wird das System arbeiten, wenn auf Swap-Speicher zugegriffen werden muss. Wenn zwischen rotierenden Festplatten und SSDs gewählt werden kann, ist es aus Performance-Sicht besser, den Swap-Speicher auf die SSD zu legen. Alternativ zu Swap-Partitionen können auch Swap-Dateien verwendet werden; dies ist hauptsächlich interessant bei Systemen mit sehr geringem Festplatten-Platz.


Nicht-Standard Beispiel-Partitionsschema

Eine Beispiel-Partitionierung für eine 20 GB Festplatte ist unten dargestellt, verwendet in einen Demonstrations-Laptop (mit Webserver, Mailserver, Gnome, ...):

root #df -h
Filesystem    Type    Size  Used Avail Use% Mounted on
/dev/sda5     ext4    509M  132M  351M  28% /
/dev/sda2     ext4    5.0G  3.0G  1.8G  63% /home
/dev/sda7     ext4    7.9G  6.2G  1.3G  83% /usr
/dev/sda8     ext4   1011M  483M  477M  51% /opt
/dev/sda9     ext4    2.0G  607M  1.3G  32% /var
/dev/sda1     ext2     51M   17M   31M  36% /boot
/dev/sda6     swap    516M   12M  504M   2% <not mounted>
(Unpartitionierter Bereich für zukünftige Verwendung: 2 GB)

/usr/ ist hier ziemlich voll (83% belegt), aber wenn die gesamte Software erst einmal installiert ist, wächst /usr/ normalerweise nicht mehr viel. Die Zuweisung einiger Gigabytes Festplatten-Speicher für /var/ mag übertrieben scheinen, denken Sie aber daran, dass portage diese Partition standardmäßig zum kompilieren von Paketen verwendet. Um /var/ in einer vernünftigen Größe (z.B. 1 GB) zu halten, ändern Sie die PORTAGE_TMPDIR Variable in /etc/portage/make.conf um auf eine Partition mit genügend freier Festplattenkapazität zum Kompilieren von sehr großen Paketen wie LibreOffice zu verweisen.

Fesplatte partitionieren mit parted

Die folgenden Teile erklären, wie Sie das Beispiel-Partitionslayout erstellen, das wir im Rest der Installationsanleitung verwenden, nämlich:

Partition Beschreibung
/dev/sda1 EFI Boot Partition
/dev/sda2 Swap Partition
/dev/sda3 Root Partition

Ändern Sie das Partitions-Layout Ihren Vorstellungen entsprechen ab.

Anzeigen des Partitions-Layouts

parted ist der GNU Partition Editor. Wenden Sie parted auf die Festplatte an (in unserem Beispiel verwenden wir /dev/sda):

root #parted /dev/sda

Wenn Sie in parted angekommen sind, erscheint eine Eingabeaufforderung die folgendermaßen aussieht:

(parted)

An dieser Stelle ist eines der verfügbaren Kommandos help, um andere zur Verfügung stehende Kommandos anzuzeigen. Ein anderer Befehl ist print, um die derzeitige Festplattenkonfiguration anzuzeigen:

(parted)print
Disk geometry for /dev/sda: 0.000-34732.890 megabytes
Disk label type: gpt
Minor    Start       End     Filesystem  Name                  Flags
1          0.017    203.938  fat32                             boot
2        203.938   4243.468  linux-swap
3       4243.469  34724.281  ext4

Diese Konfiguration ist sehr ähnlich zu der oben empfohlenen. Achten Sie in der zweiten Zeile darauf, dass die Partitionstabelle vom Typ GPT ist. Wenn es ein anderer Typ ist, wird das ia64 System nicht von dieser Festplatte booten können. Zur Erklärung wie Partitionen erzeugt werden, lassen Sie uns erst die Partitionen löschen und sie anschließend neu erzeugen.

Löschen aller Partitionen

Hinweis
Im Gegensatz zu fdisk und einigen anderen Partitionierungs-Programmen, die Änderungen so lange verschieben bis der Schreibbefehl erteilt wird, haben die parted Kommandos sofortige Wirkung. Das heißt wenn Partition hinzugefügt oder entfernt wurden gibt es keine "Rückgängig" Funktion.

Der einfache Weg um alle Partitionen zu löschen und neu anzufangen der garantiert, dass wir den richtigen Partitionstyp verwenden ist eine neue Partitionstabelle mit dem Befehl mklabel zu erstellen. Dies führt zu einer leeren GPT Partitionstabelle.

(parted) mklabelgpt
(parted) mklabelprint
Disk geometry for /dev/sda: 0.000-34732.890 megabytes
Disk label type: gpt
Minor    Start       End     Filesystem  Name                  Flags

Jetzt, da die Partitionstabelle leer ist, sind wir soweit um die Partitionen zu erstellen. Wie wir zuvor angesprochen haben, werden wir ein Standard-Partitionsschema verwenden. Natürlich brauchen Sie diese Anweisungen nicht haargenau zu befolgen, sondern können sie Ihren persönlichen Bedürfnissen anpassen.

EFI Boot Partition erstellen

Erzeugen Sie als erstes eine kleinen EFI Boot Partition im FAT Dateisystem, damit die IA64 Firmware sie lesen kann. In unserem Beispiel ist sie 32 MB groß, das zum speichern von Kerneln und elilo Konfigurationen geeignet sein sollte. Rechnen Sie damit, dass jeder IA64 Kernel um die 5 MB groß ist. Diese Konfiguration lässt somit etwas Spielraum zum Experimentieren.

(parted)mkpart primary fat32 0 32
(parted)print
Disk geometry for /dev/sda: 0.000-34732.890 megabytes
Disk label type: gpt
Minor    Start       End     Filesystem  Name                  Flags
1          0.017     32.000  fat32

Swap Partition erstellen

Lassen Sie uns nun die Swap Partition erstellen. Die klassische Größe einer Swap Partition war zwei mal so groß wie der Arbeitsspeicher im System. In modernen Systemen mit viel Arbeitsspeicher ist dies nicht länger notwendig. In den meisten Desktop Systemen reicht eine 512 Megabyte große Swap Partition aus. Für einen Server sollten Sie etwas mehr in Betracht ziehen, um die zu erwartenden Bedürfnisse zu berücksichtigen.

(parted)mkpart primary linux-swap 32 544
(parted)print
Disk geometry for /dev/sda: 0.000-34732.890 megabytes
Disk label type: gpt
Minor    Start       End     Filesystem  Name                  Flags
1          0.017     32.000  fat32
2         32.000    544.000

Root Partition erstellen

Schließlich erstellen wir die Root Partition. Unsere Konfiguration wird dazu führen, dass die Root Partition die noch verbleibende Festplatte belegt. Wir verwenden standardmäßig ext4, aber es sind auch ext2, jfs, reiserfs oder xfs möglich. Das eigentliche Dateisystem wird nicht in diesem Schritt erzeugt, aber die Partitionstabelle enthält die Angabe, welche Partition welches Dateisystem beinhaltet und es ist eine gute Idee, die Tabelle passend zum Verwendungszweck anzulegen.

(parted)mkpart primary ext4 544 34732.890
(parted)print
Disk geometry for /dev/sda: 0.000-34732.890 megabytes
Disk label type: gpt
Minor    Start       End     Filesystem  Name                  Flags
1          0.017     32.000  fat32
2         32.000    544.000
3        544.000  34732.874

parted beenden

Zum Beenden von parted tippen Sie quit. Es besteht keine Notwendigkeit in einem separaten Schritt das Partitionslayout zu speichern, weil parted das bereits bei jedem einzelnen der vorigen Schritte getan hat. parted wird Sie daran erinnern die Datei /etc/fstab zu aktualisieren, was wir später in der Installationsanleitung tun werden.

(parted)quit
Information: Don't forget to update /etc/fstab, if necessary.


Erstellen von Dateisystemen

Warnung
Wenn Sie ein SSD- oder NVMe-Laufwerk verwenden, prüfen Sie bitte, ob es ein Firmware-Upgrade benötigt. Insbesondere einige Intel-SSDs (600p und 6000p) benötigen ein Firmware-Upgrade für kritische Fehlerbehebungen, um Datenbeschädigungen zu vermeiden, die durch XFS-I/O-Nutzungsmuster verursacht werden (allerdings nicht durch einen Fehler des Dateisystems). smartctl kann helfen, das Modell und die Firmware-Version zu überprüfen.

Einleitung

Nachdem die Partitionen angelegt wurden, ist es an der Zeit, Dateisysteme darauf anzulegen. Im nächsten Abschnitt werden die unterschiedlichen Dateisysteme beschrieben, die Linux unterstützt. Leser, die bereits wissen, welches Dateisystem sie verwenden wollen, können bei Dateisystem auf einer Partition anlegen fortfahren. Alle anderen sollten weiterlesen, um mehr über die verfügbaren Dateisysteme zu erfahren ...

Dateisysteme

Linux unterstützt mehrere Dutzend Dateisysteme, wobei allerdings viele davon für ganz spezielle Anwendungszwecke optimiert sind. Nur einige Dateisysteme gelten als stabil auf der ia64 Architektur. Es ist ratsam, sich über Dateisysteme und deren Unterstützungsgrad zu informieren, damit Sie nicht für wichtige Partitionen ein eher experimentelles Dateisystem wählen. XFS ist das empfohlene all-round Dateisystem für alle Plattformen. Nachfolgend eine nicht-vollständige Auswahl von verfügbaren Dateisystemen.

btrfs
Dateisystem der neueren Generation.

Bietet erweiterte Funktionen wie Snapshotting, Selbstheilung durch Prüfsummen, transparente Kompression, Subvolumes und integriertes RAID. Kernel vor 5.4.y sind nicht garantiert sicher für die Verwendung mit btrfs in der Produktion, da Korrekturen für ernsthafte Probleme nur in den neueren Versionen der LTS-Kernelzweige vorhanden sind. RAID 5/6 und Quota-Gruppen sind bei allen Versionen von btrfs unsicher.

ext4
Ext4 ist ein zuverlässiges, universell einsetztbares Dateisystem für alle Plattformen, auch wenn ihm moderne Funktionen wie Reflinks fehlen.
f2fs
Das Flash-Friendly File System wurde ursprünglich von Samsung für die Verwendung mit NAND-Flash-Speicher entwickelt. Es ist eine gute Wahl für die Installation von Gentoo auf microSD-Karten, USB-Laufwerken oder anderen Flash-basierten Speichergeräten.
XFS
Dateisystem mit Metadaten-Journaling, das über einen robusten Funktionsumfang verfügt und für Skalierbarkeit optimiert ist. Es wurde kontinuierlich weiterentwickelt, um moderne Funktionen einzubeziehen. Der einzige Nachteil ist, dass XFS-Partitionen noch nicht verkleinert werden können, obwohl daran gearbeitet wird. XFS unterstützt vor allem Reflinks und Copy on Write (CoW), was besonders auf Gentoo-Systemenen hilfreich ist, da die Benutzer viele Kompilierungen durchführen müssen. XFS ist das empfohlene modernen Allzweck-Dateisystem für alle Plattformen. Erfordert, dass eine Partition mindestens 300 MB groß ist.
VFAT
Auch bekannt als FAT32, wird von Linux unterstützt, unterstützt aber nicht die Standard-UNIX-Berechtigungseinstellungen. Es wird hauptsächlich für die Interoperabilität/den Austausch mit anderen Betriebssystemen (Microsoft Windows oder Apples MacOS) verwendet, ist aber auch eine Notwendigkeit für einige System-Bootloader-Firmware (wie UEFI). Benutzer von UEFI-Systemen benötigen eine EFI System Partition, die mit VFAT formatiert ist, um booten zu können.
NTFS
Dieses 'New Technology"-Dateisystem ist das Vorzeige-Dateisystem von Microsoft Windows seit Windows NT 3.1. Ähnlich wie VFAT speichert es keine UNIX-Berechtigungseinstellungen oder erweiterte Attribute, die für BSD oder Linux notwendig sind, um ordnungsgemäß zu funktionieren, daher sollte es in den meisten Fällen nicht als Root-Dateisystem verwendet werden. Es sollte nur für die Interoperabilität oder den Datenaustausch mit Microsoft Windows-Systemen verwendet werden (beachten Sie die Betonung auf nur).

Ausführlichere Informationen über Dateisysteme finden Sie in dem von der Community gepflegten Dateisystem-Artikel.

Dateisystem auf einer Partition anlegen

Hinweis
Bitte stellen Sie sicher, dass Sie das entsprechende Paket für das gewählte Dateisystem später im Handbuch emergen, bevor Sie am Ende des Installationsprozesses neu booten.

Dateisysteme können mit Hilfe von Programmen auf einer Partition oder auf einem Datenträger angelegt werden. Die folgende Tabelle zeigt, welchen Befehl Sie für welches Dateisystem benötigen. Um weitere Informationen zu einem Dateisystem zu erhalten, können Sie auf den Namen des Dateisystems klicken.

Dateisystem Befehl zum Anlegen Teil der Minimal CD? Gentoo Paket
btrfs mkfs.btrfs Yes sys-fs/btrfs-progs
ext4 mkfs.ext4 Yes sys-fs/e2fsprogs
f2fs mkfs.f2fs Yes sys-fs/f2fs-tools
xfs mkfs.xfs Yes sys-fs/xfsprogs
vfat mkfs.vfat Yes sys-fs/dosfstools
NTFS mkfs.ntfs Yes sys-fs/ntfs3g
Wichtig
The handbook recommends new partitions as part of the installation process, but it is important to note running any mkfs command will erase any data contained within the partition. When necessary, ensure any data that exists within is appropriately backed up before creating a few filesystem.

Um beispielsweise die root-Partition (/dev/sda3) als xfs zu formatieren (wie in dem Beispiel-Partitionsschema), würde man folgende Befehle verwenden:

root #mkfs.xfs /dev/sda3

EFI system partition filesystem

The EFI system partition () must be formatted as FAT32:

Legacy BIOS boot partition filesystem

Systems booting via legacy BIOS with a MBR/DOS disklabel can use any filesystem format supported by the bootloader.

For example, to format with XFS:

root #mkfs.xfs

Small ext4 partitions

Bei der Verwendung von ext4 auf kleinen Partitionen (kleiner als 8 GiB), sollte das Dateisystem mit den passenden Optionen erstellt werden, um genügend Inodes zu reservieren. Dies kann mit einer der folgenden Anweisungen erfolgen:

root #mkfs.ext4 -T small /dev/<device>

Dies vervierfacht die Zahl der Inodes für ein angegebenes Dateisystem in der Regel, da es dessen "bytes-per-inode" (Bytes pro Inode) von 16 kB auf 4 kB pro Inode reduziert.

Aktivieren der Swap-Partition

mkswap ist der Befehl der verwendet wird um Swap-Partitionen zu initialisieren:

root #mkswap /dev/sda2

Zur Aktivierung der Swap-Partition verwenden Sie swapon:

root #swapon /dev/sda2

This 'activation' step is only necessary because the swap partition is newly created within the live environment. Once the system has been rebooted, as long as the swap partition is properly defined within fstab or other mount mechanism, swap space will activate automatically.

Einhängen der Root-Partition

Hinweis
Installations which were previously started, but did not finish the installation process can resume the installation from this point in the handbook. Use this link as the permalink: Resumed installations start here.
Tipp
Anwender, die ein Nicht-Gentoo Installationsmedium verwenden, müssen mit folgendem Befehl einen Mount-Point erzeugen:
root #mkdir --parents /mnt/gentoo
root #mkdir --parents

For EFI installs only, the ESP should be mounted under the root partition location:

root #mkdir --parents

Continue creating additional mount points necessary for any additional (custom) partition(s) created during previous steps by using the mkdir command.

Nachdem die Partitionen initialisiert wurden und ein Dateisystem beinhalten, ist es an der Zeit, diese einzuhängen. Verwenden Sie den Befehl mount, aber vergessen Sie nicht die notwendigen Einhänge-Verzeichnisse für jede Partition zu erzeugen. Als Beispiel hängen wir die Root-Partition ein:

Mount the root partition:

root #mount /dev/sda3 /mnt/gentoo

Continue mounting additional (custom) partitions as necessary using the mount command.

Hinweis
Wenn sich /tmp/ auf einer separaten Partition befinden muss, ändern Sie die Berechtigungen nach dem Einhängen:
root #chmod 1777 /mnt/gentoo/tmp
Dies gilt ebenfalls für /var/tmp.

In der Anleitung wird später das Dateisystem proc (eine virtuelle Schnittstelle zum Kernel) zusammen mit anderen Kernel Pseudo-Dateisystemen eingehängt. Zunächst installieren wir jedoch die Gentoo Installationsdateien.