Piotes NVidia/nvidia

From Gentoo Wiki
Jump to: navigation, search
This page is a translated version of the page NVidia/nvidia-drivers and the translation is 14% complete.

Other languages:
English • ‎español • ‎français • ‎日本語 • ‎한국어 • ‎Nederlands • ‎русский

x11-drivers/nvidia-drivers is the proprietary graphics driver for nVidia graphic cards. An open source alternative is nouveau.

The x11-drivers/nvidia-drivers in the tree are released by nVidia and are built against the Linux kernel. They contain a binary blob that does the heavy lifting for talking to the card. The drivers consist of two parts, a kernel module, and an X11 driver. Both parts are included in a single package. Due to the way nVidia has been packaging their drivers, it is necessary to make some choices before installing the drivers.

The x11-drivers/nvidia-drivers package contains the latest drivers from nVidia with support for all cards, with several versions available depending on how old the card is. It uses an eclass to detect what kind of card the system is running so that it installs the proper version.

Hardware compatibility

The x11-drivers/nvidia-drivers package supports a range of available nVidia cards. Multiple versions are available for installation, depending on the card(s) that the system has. See the official nVidia documentation, What's a legacy driver?, to find out what version of x11-drivers/nvidia-drivers should be used. A pretty decent way to find this out through an interactive form. Enter the graphics card that is used by the system (mind the Legacy option in the 'Product Type' field) and the form should end up with the best supported version.

If the card has been identified as a legacy card then mask the more recent releases of nvidia-drivers, i.e

FILE /etc/portage/package.mask
>x11-drivers/nvidia-drivers-174

Note that Gentoo does not provide the 71.86.xx versions. If the system has a card that needs these drivers then it is recommended to use the nouveau driver.

Kernel

As mentioned above, the nVidia kernel driver installs and runs against the current kernel. It builds as a module, so the kernel must support the loading of kernel modules (see below).

The kernel module (nvidia.ko) consists of a proprietary part (commonly known as the "binary blob") which drives the graphics chip(s), and an open source part (the "glue") which at runtime acts as intermediary between the proprietary part and the kernel. These all need to work nicely together as otherwise the user might be faced with data loss (through kernel panics, X servers crashing with unsaved data in X applications) and even hardware failure (overheating and other power management related issues should spring to mind).

Kernel compatibility

From time to time, a new kernel release changes the internal ABI for drivers, which means all drivers that use those ABIs must be changed accordingly. For open source drivers, especially those distributed with the kernel, these changes are nearly trivial to fix since the entire chain of calls between drivers and other parts of the kernel can be reviewed quite easily. For proprietary drivers like nvidia.ko, it doesn't work quite the same. When the internal ABIs change, then it is not possible to merely fix the "glue", because nobody knows how the glue is used by the proprietary part. Even after managing to patch things up to have things seem to work nicely, the user still risks that running nvidia.ko in the new, unsupported kernel will lead to data loss and hardware failure.

When a new, incompatible kernel version is released, it is probably best to stick with the newest supported kernel for a while. Nvidia usually takes a few weeks to prepare a new proprietary release they think is fit for general use. Just be patient. If absolutely necessary, then it is possible to use the epatch_user command with the nvidia-drivers ebuilds: this allows the user to patch nvidia-drivers to somehow fit in with the latest, unsupported kernel release. Do note that neither the nvidia-drivers maintainers nor Nvidia will support this situation. The hardware warranty will most likely be void, Gentoo's maintainers cannot begin to fix the issues since it's a proprietary driver that only Nvidia can properly debug, and the kernel maintainers (both Gentoo's and upstream) will certainly not support proprietary drivers, or indeed any "tainted" system that happens to run into trouble.

Required kernel options

If genkernel all was used to configure the kernel, then everything is all set. If not, double check the kernel configuration so that this support is enabled:

KERNEL Enable loadable module support
[*] Enable loadable module support --->

Also enable Memory Type Range Register in the kernel:

KERNEL Enable MTRR support
Processor type and features --->
    [*] MTRR (Memory Type Range Register) support

If the system has an AGP graphics card, then optionally enable agpgart support to the kernel, either compiled in or as a module. If the in-kernel agpgart module is not used, then the drivers will use its own agpgart implementation, called NvAGP. On certain systems, this performs better than the in-kernel agpgart, and on others, it performs worse. Evaluate either choice on the system to get the best performance. When uncertain what to do, use the in-kernel agpgart:

KERNEL Enable agpgart support
Device Drivers --->
    Graphics support --->
        -*- /dev/agpgart (AGP Support) --->
Note
Sur amd64, IOMMU gère les réglages agpgart.
Important
For x86 and AMD64 processors, the in-kernel framebuffer driver conflicts with the binary driver provided by nVidia. When compiling the kernel for these CPUs, completely remove support for the in-kernel driver as shown:
KERNEL Disable support for the in-kernel driver
Device Drivers --->
    Graphics support --->
        Frame buffer Devices --->
            <*> Support for frame buffer devices --->
            < >   nVidia Framebuffer Support
            < >   nVidia Riva support

A framebuffer alternative is uvesafb, which can be installed parallel to x11-drivers/nvidia-drivers.

The nvidia-drivers ebuild automatically discovers the kernel version based on the /usr/src/linux symlink. Please ensure that this symlink is pointing to the correct sources and that the kernel is correctly configured. Please refer to the "Configuring the Kernel" section of the Gentoo Handbook for details on configuring the kernel.

First, choose the right kernel source using eselect. When using gentoo-sources-3.7.10, the kernel listing might look something like this:

root #eselect kernel list
Available kernel symlink targets:
  [1]   linux-3.7.10-gentoo *
  [2]   linux-3.7.9-gentoo

In the above output, notice that the linux-3.7.10-gentoo kernel is marked with an asterisk (*) to show that it is the symlinked kernel.

If the symlink is not pointing to the correct sources, update the link by selecting the number of the desired kernel sources, as in the example above.

root #eselect kernel set 1

Pilotes

Now it's time to install the drivers. First follow the X Server Configuration Guide and set VIDEO_CARDS="nvidia" in /etc/portage/make.conf. During the installation of the X server, it will then install the right version of x11-drivers/nvidia-drivers.

Note
The drivers can be installed with the gtk USE flag set in /etc/portage/make.conf. This will install media-video/nvidia-settings, a handy graphical tool for monitoring and configuring several aspects of the nVidia card.
Important
Every time a kernel is built, it is necessary to reinstall the nVidia kernel modules. An easy way to rebuild the modules installed by ebuilds (such as x11-drivers/nvidia-drivers) is to run emerge @module-rebuild.

Once the installation has finished, run modprobe nvidia to load the kernel module into memory. If this is an upgrade, remove the previous module first.

Pilotes

Il est temps maintenant d'installer les pilotes. Vous pouvez le faire en suivant les directives du guide de configuration du serveur X et en définissant la variable VIDEO_CARDS=nvidia dans /etc/portage/make.conf. Quand vous installerez le serveur X, il installera la bonne version du pilote nvidia-drivers pour vous.

To prevent from having to manually load the module on every bootup, have this done automatically each time the system is booted, so edit /etc/conf.d/modules and add nvidia to it.

Important
If agpgart is compiled as a module, then add it to /etc/conf.d/modules as well.

The X server

Once the appropriate drivers are installed, configure the X server to use the nvidia driver instead of the default nv driver.

FILE /etc/X11/xorg.conf.d/nvidia.confExplicit nvidia driver section
 Section "Device"
   Identifier  "nvidia"
   Driver      "nvidia"
 EndSection

Run eselect so that the X server uses the nVidia GLX libraries:

root #eselect opengl set nvidia

Permissions

You will need to add the user you want to be able to access the video card to the video group:

root #gpasswd -a larry video

Note that you will still be able to run X without permission to the DRI subsystem, but usually not with acceleration enabled.

Testing the card

To test the nVidia card, fire up X and run glxinfo, which is part of the x11-apps/mesa-progs package. It should say that direct rendering is activated:

user $glxinfo | grep direct
direct rendering: Yes

To monitor the FPS, run glxgears.

Enabling nvidia support

Some tools, such as media-video/mplayer and media-libs/xine-lib, use a local USE flag called xvmc which enables XvMCNVIDIA support, useful when watching high resolution movies. Add in xvmc in the USE variable in /etc/portage/make.conf or add it as USE flag to media-video/mplayer and/or media-libs/xine-lib in /etc/portage/package.use.

Les processeurs graphiques des séries GeForce 8 et postérieures sont fournis avec la prise en charge VDPAU qui a supplanté la prise en charge XvMCNVIDIA. Reportez-vous à l'article VDPAU pour savoir comment activer la prise en charge VDPAU.

There are also some applications that use the nvidia USE flag, so it might be a good idea to add it to /etc/portage/make.conf.

Then, run emerge -uD --newuse @world to rebuild the applications that benefit from the USE flag change.

Using the nVidia settings tool

nVidia also provides a settings tool. This tool allows the user to monitor and change graphical settings without restarting the X server and is available through Portage as media-video/nvidia-settings. As mentioned earlier, it will be pulled in automatically when installing the drivers with the gtk USE flag set in /etc/portage/make.conf or in /etc/portage/package.use.

Activer OpenGL/OpenCL

Pour activer openGL et openCL.

root #eselect opengl set nvidia
root #eselect opencl set nvidia

Make sure that the Xorg server is not running during these changes.

Troubleshooting

Le pilote ne s'initialise pas lorsque les interruptions MSI sont activées

Par défaut, le pilote NVIDIA Linux utilise les interruptions signalées par message (Message Signaled Interrupts ). Ceci procure des avantages de compatibilité et d'adaptabilité, principalement parce que cela évite le partage des requêtes d'interruption (IRQ). Quelques systèmes ont été identifiés comme ayant des problèmes de prise en charge des MSI, alors qu'ils fonctionnent bien avec les interruptions câblées virtuelles. Ces problèmes se traduisent par une inaptitude à démarrer le serveur X avec le pilote NVIDIA, ou des échecs dans l'initialisation de la plateforme de compilation parallèle CUDA de NVIDIA.

Les MSI peuvent être désactivées via le paramètre NVreg_EnableMSI=0 du module NVIDIA du noyau. Ceci peut être défini en ligne de commande au moment du chargement du module, ou de manière plus appropriée via les fichiers de configuration du module du noyau de la distribution (telles que celles placées dans /etc/modprobe.d/).

Par exemple :

FILE /etc/modprobe.d/nvidia.confSetting nvidia NVreg_EnableMSI
# Nvidia drivers support
alias char-major-195 nvidia
alias /dev/nvidiactl char-major-195
  
# To tweak the driver the following options can be used, note that
# you should be careful, as it could cause instability!! For more 
# options see /usr/share/doc/nvidia-drivers-337.19/README 
#
# !!! SECURITY WARNING !!!
# DO NOT MODIFY OR REMOVE THE DEVICE FILE RELATED OPTIONS UNLESS YOU KNOW
# WHAT YOU ARE DOING.
# ONLY ADD TRUSTED USERS TO THE VIDEO GROUP, THESE USERS MAY BE ABLE TO CRASH,
# COMPROMISE, OR IRREPARABLY DAMAGE THE MACHINE.
options nvidia NVreg_DeviceFileMode=432 NVreg_DeviceFileUID=0 NVreg_DeviceFileGID=27 NVreg_ModifyDeviceFiles=1 NVreg_EnableMSI=0

Getting 2D acceleration to work on machines with 4GB memory or more

When nVidia 2D acceleration is giving problems, then it is likely that the system is unable to set up a write-combining range with MTRR. To verify, check the contents of /proc/mtrr:

root #cat /proc/mtrr

Every line should contain write-back or write-combining. When a line shows up with uncachable in it then it is necessary to change a BIOS setting to fix this.

Reboot and enter the BIOS, then find the MTRR settings (probably under "CPU Settings"). Change the setting from continuous to discrete and boot back into Linux. There is now no uncachable entry anymore and 2D acceleration now works without any glitches.

"no such device" appears when trying to load the kernel module

This is usually caused by one of the following issues:

  1. The system does not have a nVidia card at all. Check lspci output to confirm that the system has a nVidia graphics card installed and detected.
  2. The currently installed version of x11-drivers/nvidia-drivers does not support the installed graphics card model. Check the README file in /usr/share/nvidia-drivers-*/ for a list of supported devices, or use the driver search at http://www.geforce.com/drivers.
  3. Another kernel driver has control of the hardware. Check lspci -k to see if another driver like "nouveau" is bound to the graphics card. If so, disable or blacklist this driver.

Xorg says it can't find any screens

When after booting the system, it ends up with a black screen or a console prompt instead of the GUI; then press Ctrl+Alt+F2 to bring up a virtual console. Next, run:

-

user $ startx

to see the output of Xorg. If one of the first errors is that Xorg can't find any screens, then follow the following steps to resolve the issue.

It should be enough to run the following command before rebooting:

user $ /opt/bin/nvidia-xconfig

But if that doesn't work, run lspci and notice that the video card starts off like this:

root #lspci
 . . .
01:00.0 VGA compatible controller: make and model of videocard
 . . . 

Take the first bit, 01.00.0 and put it in the /etc/X11/xorg.conf file with the BusID option:

FILE /etc/X11/xorg.conf
# this is not the whole file, only the part that needs edited
# the file should already exist after running nvidia-xconfig
 
Section "Device"
    Identifier     "Device0"
    Driver         "nvidia"
    VendorName     "NVIDIA Corporation"
    BusID          "PCI:1:0:0"
EndSection

Le rendu direct n'est pas activé

If direct rendering does not work, it may be because the kernel has Direct Rendering Manager enabled, which conflicts with the driver. See the direct rendering status by following instructions in the section Testing the card.

First, disable Direct Rendering Manager (CONFIG_DRM) in the kernel :

KERNEL Disabling Direct Rendering Manager
Device drivers --->
    Graphics support --->
        < > Direct Rendering Manager (XFree86 4.1.0 and higher DRI support)

Next, rebuild x11-drivers/nvidia-drivers since the driver may have built against the kernel DRM symbols. It should fix the problem.

Video playback stuttering or slow

Lately there seems to be some breaking with playback of some types of video with the NVidia binary drivers, causing slow video playback or significant stuttering. This problem seems to be occurring within the Intel CPU Idle replacement instead of the common ACPI CPU idling method for certain CPU's.

Disable the Intel CPU idling method using intel_idle.max_cstate=0 on the kernel command line boot method, which should cause the kernel to automatically fall back to the normal or older ACPI CPU idling method. Also, disabling the NVidia Powermizer feature, or setting Powermizer to maximum performance within nvidia-settings has been said to help. Although the Intel CPU idling method recently was introduced as the default CPU idling method for i5 and i7 CPUs (versus using ACPI CPU idling) is the root cause here. This idling method significantly solves the problem, however some minimal stuttering or slow video is encountered if deinterlacing was enabled; this is when the video is likely already deinterlaced (ie. alias mplayer-nodeint with something similar to mplayer -vo vdpau:deint=0:denoise=0:nochroma-deint:colorspace=0:hqscaling=1, video.mpg as a work around.)

Expert configuration

Documentation

The x11-drivers/nvidia-drivers package also comes with comprehensive documentation. This is installed into /usr/share/doc and can be viewed with the following command:

user $less /usr/share/doc/nvidia-drivers-*/README.bz2

Kernel module parameters

The nvidia kernel module accepts a number of parameters (options) which can be used to tweak the behaviour of the driver. Most of these are mentioned in the documentation. To add or change the values of these parameters, edit the file /etc/modprobe.d/nvidia.conf. Remember to run update-modules after modifying this file, and bear in mind to reload the nvidia module before the new settings take effect.

Edit /etc/modprobe.d/nvidia.conf:

root #nano -w /etc/modprobe.d/nvidia.conf

Update module information:

root #update-modules

Unload the nvidia module...

root #modprobe -r nvidia

...and load it once again:

root #modprobe nvidia

Advanced X configuration

The GLX layer also has a plethora of options which can be configured. These control the configuration of TV out, dual displays, monitor frequency detection, etc. Again, all of the available options are detailed in the documentation.

To use any of these options, list them in the relevant Device section of the X config file (usually /etc/X11/xorg.conf). For example, to disable the splash logo:

FILE /etc/X11/xorg.confDisable the splash logo
Section "Device"
  Identifier "nVidia Inc. GeForce2"
  Driver     "nvidia"
  Option     "NoLogo" "true"
  VideoRam   65536
EndSection

See also

Remerciements

Nous tenons à remercier les auteurs et éditeurs suivants pour leur contribution à ce guide :Sven Vermeulen, Joshua Saddler, M Curtis Napier, Chris Gianelloni et José Fournier.


This article is based on a document formerly found on our main website gentoo.org.
The following people have contributed to the original document: Sven Vermeulen, Joshua Saddler, M Curtis Napier and Chris Gianelloni
They are listed here as the Wiki history does not provide for any attribution. If you edit the Wiki article, please do not add yourself here, your contributions are recorded on the history page.